Consistent approximations of linear stochastic models

This paper considers the problem of approximating a stochastic process $\{ y(t)\} $ with state space $X$. The desired process $\{ y_1 (t)\} $ has state space $X_1 $, of dimension as small as possible, such that, in mean square norm, \[ \left\| {y(t) - y_1 (t)} \right\| \leqq \varepsilon \] for a giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1989, Vol.27 (1), p.83-107
1. Verfasser: GOMBANI, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the problem of approximating a stochastic process $\{ y(t)\} $ with state space $X$. The desired process $\{ y_1 (t)\} $ has state space $X_1 $, of dimension as small as possible, such that, in mean square norm, \[ \left\| {y(t) - y_1 (t)} \right\| \leqq \varepsilon \] for a given $\varepsilon \geqq 0$. The solution given here has the inclusion property, i.e., $X_1 \subset X$ and is consistent, that is, it reduces to the problem of finding a minimal realization of $y(t)$ when $\varepsilon $ is set equal to zero.
ISSN:0363-0129
1095-7138
DOI:10.1137/0327006