Consistent approximations of linear stochastic models
This paper considers the problem of approximating a stochastic process $\{ y(t)\} $ with state space $X$. The desired process $\{ y_1 (t)\} $ has state space $X_1 $, of dimension as small as possible, such that, in mean square norm, \[ \left\| {y(t) - y_1 (t)} \right\| \leqq \varepsilon \] for a giv...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1989, Vol.27 (1), p.83-107 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the problem of approximating a stochastic process $\{ y(t)\} $ with state space $X$. The desired process $\{ y_1 (t)\} $ has state space $X_1 $, of dimension as small as possible, such that, in mean square norm, \[ \left\| {y(t) - y_1 (t)} \right\| \leqq \varepsilon \] for a given $\varepsilon \geqq 0$. The solution given here has the inclusion property, i.e., $X_1 \subset X$ and is consistent, that is, it reduces to the problem of finding a minimal realization of $y(t)$ when $\varepsilon $ is set equal to zero. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/0327006 |