Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model
The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful suf...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2012-03, Vol.61 (1), p.140-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 140 |
container_title | IEEE transactions on reliability |
container_volume | 61 |
creator | Hong, Won-Sin Hsieh, Sun-Yuan |
description | The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful sufficient conditions are proposed to determine strong diagnosability, and the conditional diagnosability of a system. We then apply them to show that an n-dimensional augmented cube AQ n is strongly (2n -1)-diagnosable for n ≥ 5, and the conditional diagnosability of AQ n is 6n - 17 for n ≥ 6. Our result demonstrates that the conditional diagnosability of AQ n is about three times larger than the classical diagnosability. |
doi_str_mv | 10.1109/TR.2011.2170105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_925912349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6041047</ieee_id><sourcerecordid>2600722421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7baba92b4538f262120ce41314df92ae52b0e83c70d07c1125cfac15baf941893</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUwM7BETCxpfY7dxGNVPqUipNLOlpNciqvULnYy9N_jqsDQ6XS653mlewm5BToCoHK8XIwYBRgxyClQcUYGIESRQs7gnAwohSKVgslLchXCJq6cy2JA2s_OO7tOHo1eWxd0aVrT7RNt62TmbG0646xuT8-uSab9eou2w8j1JYZkZWv0SfeF0dvutDfB2T_NhOTd1dhek4tGtwFvfueQrJ6flrPXdP7x8jabztMqY9ClealLLVnJRVY0bMKA0Qo5ZMDrRjKNgpUUi6zKaU3zCoCJqtEViFI3kkMhsyF5OObuvPvuMXRqa0KFbastuj4ooCAnMZxmEb0_QTeu9_HloCQTEljGD3njI1R5F4LHRu282Wq_j0nqUL5aLtShfPVbfjTujoZBxH96QjlQnmc_NLWAIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925912349</pqid></control><display><type>article</type><title>Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model</title><source>IEEE Electronic Library (IEL)</source><creator>Hong, Won-Sin ; Hsieh, Sun-Yuan</creator><creatorcontrib>Hong, Won-Sin ; Hsieh, Sun-Yuan</creatorcontrib><description>The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful sufficient conditions are proposed to determine strong diagnosability, and the conditional diagnosability of a system. We then apply them to show that an n-dimensional augmented cube AQ n is strongly (2n -1)-diagnosable for n ≥ 5, and the conditional diagnosability of AQ n is 6n - 17 for n ≥ 6. Our result demonstrates that the conditional diagnosability of AQ n is about three times larger than the classical diagnosability.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2011.2170105</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Augmented cubes ; comparison diagnosis model ; conditional diagnosability ; Cubes ; Diagnosis ; Fault diagnosis ; Fault tolerance ; Hypercubes ; interconnection networks ; Multiprocessing systems ; Networks ; Program processors ; strong diagnosability ; system reliability ; Very large scale integration</subject><ispartof>IEEE transactions on reliability, 2012-03, Vol.61 (1), p.140-148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7baba92b4538f262120ce41314df92ae52b0e83c70d07c1125cfac15baf941893</citedby><cites>FETCH-LOGICAL-c321t-7baba92b4538f262120ce41314df92ae52b0e83c70d07c1125cfac15baf941893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6041047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6041047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Won-Sin</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><title>Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful sufficient conditions are proposed to determine strong diagnosability, and the conditional diagnosability of a system. We then apply them to show that an n-dimensional augmented cube AQ n is strongly (2n -1)-diagnosable for n ≥ 5, and the conditional diagnosability of AQ n is 6n - 17 for n ≥ 6. Our result demonstrates that the conditional diagnosability of AQ n is about three times larger than the classical diagnosability.</description><subject>Augmented cubes</subject><subject>comparison diagnosis model</subject><subject>conditional diagnosability</subject><subject>Cubes</subject><subject>Diagnosis</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Hypercubes</subject><subject>interconnection networks</subject><subject>Multiprocessing systems</subject><subject>Networks</subject><subject>Program processors</subject><subject>strong diagnosability</subject><subject>system reliability</subject><subject>Very large scale integration</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqUwM7BETCxpfY7dxGNVPqUipNLOlpNciqvULnYy9N_jqsDQ6XS653mlewm5BToCoHK8XIwYBRgxyClQcUYGIESRQs7gnAwohSKVgslLchXCJq6cy2JA2s_OO7tOHo1eWxd0aVrT7RNt62TmbG0646xuT8-uSab9eou2w8j1JYZkZWv0SfeF0dvutDfB2T_NhOTd1dhek4tGtwFvfueQrJ6flrPXdP7x8jabztMqY9ClealLLVnJRVY0bMKA0Qo5ZMDrRjKNgpUUi6zKaU3zCoCJqtEViFI3kkMhsyF5OObuvPvuMXRqa0KFbastuj4ooCAnMZxmEb0_QTeu9_HloCQTEljGD3njI1R5F4LHRu282Wq_j0nqUL5aLtShfPVbfjTujoZBxH96QjlQnmc_NLWAIw</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Hong, Won-Sin</creator><creator>Hsieh, Sun-Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201203</creationdate><title>Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model</title><author>Hong, Won-Sin ; Hsieh, Sun-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7baba92b4538f262120ce41314df92ae52b0e83c70d07c1125cfac15baf941893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Augmented cubes</topic><topic>comparison diagnosis model</topic><topic>conditional diagnosability</topic><topic>Cubes</topic><topic>Diagnosis</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Hypercubes</topic><topic>interconnection networks</topic><topic>Multiprocessing systems</topic><topic>Networks</topic><topic>Program processors</topic><topic>strong diagnosability</topic><topic>system reliability</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Won-Sin</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Won-Sin</au><au>Hsieh, Sun-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2012-03</date><risdate>2012</risdate><volume>61</volume><issue>1</issue><spage>140</spage><epage>148</epage><pages>140-148</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful sufficient conditions are proposed to determine strong diagnosability, and the conditional diagnosability of a system. We then apply them to show that an n-dimensional augmented cube AQ n is strongly (2n -1)-diagnosable for n ≥ 5, and the conditional diagnosability of AQ n is 6n - 17 for n ≥ 6. Our result demonstrates that the conditional diagnosability of AQ n is about three times larger than the classical diagnosability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2011.2170105</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2012-03, Vol.61 (1), p.140-148 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_proquest_journals_925912349 |
source | IEEE Electronic Library (IEL) |
subjects | Augmented cubes comparison diagnosis model conditional diagnosability Cubes Diagnosis Fault diagnosis Fault tolerance Hypercubes interconnection networks Multiprocessing systems Networks Program processors strong diagnosability system reliability Very large scale integration |
title | Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Diagnosability%20and%20Conditional%20Diagnosability%20of%20Augmented%20Cubes%20Under%20the%20Comparison%20Diagnosis%20Model&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Hong,%20Won-Sin&rft.date=2012-03&rft.volume=61&rft.issue=1&rft.spage=140&rft.epage=148&rft.pages=140-148&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2011.2170105&rft_dat=%3Cproquest_RIE%3E2600722421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925912349&rft_id=info:pmid/&rft_ieee_id=6041047&rfr_iscdi=true |