Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model

The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful suf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2012-03, Vol.61 (1), p.140-148
Hauptverfasser: Hong, Won-Sin, Hsieh, Sun-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 140
container_title IEEE transactions on reliability
container_volume 61
creator Hong, Won-Sin
Hsieh, Sun-Yuan
description The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful sufficient conditions are proposed to determine strong diagnosability, and the conditional diagnosability of a system. We then apply them to show that an n-dimensional augmented cube AQ n is strongly (2n -1)-diagnosable for n ≥ 5, and the conditional diagnosability of AQ n is 6n - 17 for n ≥ 6. Our result demonstrates that the conditional diagnosability of AQ n is about three times larger than the classical diagnosability.
doi_str_mv 10.1109/TR.2011.2170105
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_925912349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6041047</ieee_id><sourcerecordid>2600722421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7baba92b4538f262120ce41314df92ae52b0e83c70d07c1125cfac15baf941893</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUwM7BETCxpfY7dxGNVPqUipNLOlpNciqvULnYy9N_jqsDQ6XS653mlewm5BToCoHK8XIwYBRgxyClQcUYGIESRQs7gnAwohSKVgslLchXCJq6cy2JA2s_OO7tOHo1eWxd0aVrT7RNt62TmbG0646xuT8-uSab9eou2w8j1JYZkZWv0SfeF0dvutDfB2T_NhOTd1dhek4tGtwFvfueQrJ6flrPXdP7x8jabztMqY9ClealLLVnJRVY0bMKA0Qo5ZMDrRjKNgpUUi6zKaU3zCoCJqtEViFI3kkMhsyF5OObuvPvuMXRqa0KFbastuj4ooCAnMZxmEb0_QTeu9_HloCQTEljGD3njI1R5F4LHRu282Wq_j0nqUL5aLtShfPVbfjTujoZBxH96QjlQnmc_NLWAIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925912349</pqid></control><display><type>article</type><title>Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model</title><source>IEEE Electronic Library (IEL)</source><creator>Hong, Won-Sin ; Hsieh, Sun-Yuan</creator><creatorcontrib>Hong, Won-Sin ; Hsieh, Sun-Yuan</creatorcontrib><description>The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful sufficient conditions are proposed to determine strong diagnosability, and the conditional diagnosability of a system. We then apply them to show that an n-dimensional augmented cube AQ n is strongly (2n -1)-diagnosable for n ≥ 5, and the conditional diagnosability of AQ n is 6n - 17 for n ≥ 6. Our result demonstrates that the conditional diagnosability of AQ n is about three times larger than the classical diagnosability.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2011.2170105</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Augmented cubes ; comparison diagnosis model ; conditional diagnosability ; Cubes ; Diagnosis ; Fault diagnosis ; Fault tolerance ; Hypercubes ; interconnection networks ; Multiprocessing systems ; Networks ; Program processors ; strong diagnosability ; system reliability ; Very large scale integration</subject><ispartof>IEEE transactions on reliability, 2012-03, Vol.61 (1), p.140-148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7baba92b4538f262120ce41314df92ae52b0e83c70d07c1125cfac15baf941893</citedby><cites>FETCH-LOGICAL-c321t-7baba92b4538f262120ce41314df92ae52b0e83c70d07c1125cfac15baf941893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6041047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6041047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Won-Sin</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><title>Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful sufficient conditions are proposed to determine strong diagnosability, and the conditional diagnosability of a system. We then apply them to show that an n-dimensional augmented cube AQ n is strongly (2n -1)-diagnosable for n ≥ 5, and the conditional diagnosability of AQ n is 6n - 17 for n ≥ 6. Our result demonstrates that the conditional diagnosability of AQ n is about three times larger than the classical diagnosability.</description><subject>Augmented cubes</subject><subject>comparison diagnosis model</subject><subject>conditional diagnosability</subject><subject>Cubes</subject><subject>Diagnosis</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Hypercubes</subject><subject>interconnection networks</subject><subject>Multiprocessing systems</subject><subject>Networks</subject><subject>Program processors</subject><subject>strong diagnosability</subject><subject>system reliability</subject><subject>Very large scale integration</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqUwM7BETCxpfY7dxGNVPqUipNLOlpNciqvULnYy9N_jqsDQ6XS653mlewm5BToCoHK8XIwYBRgxyClQcUYGIESRQs7gnAwohSKVgslLchXCJq6cy2JA2s_OO7tOHo1eWxd0aVrT7RNt62TmbG0646xuT8-uSab9eou2w8j1JYZkZWv0SfeF0dvutDfB2T_NhOTd1dhek4tGtwFvfueQrJ6flrPXdP7x8jabztMqY9ClealLLVnJRVY0bMKA0Qo5ZMDrRjKNgpUUi6zKaU3zCoCJqtEViFI3kkMhsyF5OObuvPvuMXRqa0KFbastuj4ooCAnMZxmEb0_QTeu9_HloCQTEljGD3njI1R5F4LHRu282Wq_j0nqUL5aLtShfPVbfjTujoZBxH96QjlQnmc_NLWAIw</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Hong, Won-Sin</creator><creator>Hsieh, Sun-Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201203</creationdate><title>Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model</title><author>Hong, Won-Sin ; Hsieh, Sun-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7baba92b4538f262120ce41314df92ae52b0e83c70d07c1125cfac15baf941893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Augmented cubes</topic><topic>comparison diagnosis model</topic><topic>conditional diagnosability</topic><topic>Cubes</topic><topic>Diagnosis</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Hypercubes</topic><topic>interconnection networks</topic><topic>Multiprocessing systems</topic><topic>Networks</topic><topic>Program processors</topic><topic>strong diagnosability</topic><topic>system reliability</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Won-Sin</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Won-Sin</au><au>Hsieh, Sun-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2012-03</date><risdate>2012</risdate><volume>61</volume><issue>1</issue><spage>140</spage><epage>148</epage><pages>140-148</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The problem of fault diagnosis has been discussed widely, and the diagnosability of many well-known networks has been explored. Strong diagnosability, and conditional diagnosability are both novel measurements for evaluating reliability and fault tolerance of a system. In this paper, some useful sufficient conditions are proposed to determine strong diagnosability, and the conditional diagnosability of a system. We then apply them to show that an n-dimensional augmented cube AQ n is strongly (2n -1)-diagnosable for n ≥ 5, and the conditional diagnosability of AQ n is 6n - 17 for n ≥ 6. Our result demonstrates that the conditional diagnosability of AQ n is about three times larger than the classical diagnosability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2011.2170105</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2012-03, Vol.61 (1), p.140-148
issn 0018-9529
1558-1721
language eng
recordid cdi_proquest_journals_925912349
source IEEE Electronic Library (IEL)
subjects Augmented cubes
comparison diagnosis model
conditional diagnosability
Cubes
Diagnosis
Fault diagnosis
Fault tolerance
Hypercubes
interconnection networks
Multiprocessing systems
Networks
Program processors
strong diagnosability
system reliability
Very large scale integration
title Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Diagnosability%20and%20Conditional%20Diagnosability%20of%20Augmented%20Cubes%20Under%20the%20Comparison%20Diagnosis%20Model&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Hong,%20Won-Sin&rft.date=2012-03&rft.volume=61&rft.issue=1&rft.spage=140&rft.epage=148&rft.pages=140-148&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2011.2170105&rft_dat=%3Cproquest_RIE%3E2600722421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925912349&rft_id=info:pmid/&rft_ieee_id=6041047&rfr_iscdi=true