Using the QR factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains

For an $n$-state finite, homogeneous, ergodic Markov chain, with transition matrix ${\bf P}$ and stationary distribution ${\boldsymbol \pi} $ we assume that the entries of ${\bf P}$ are differentiable functions of a parameter $t$ and we obtain an expression for $d{\boldsymbol \pi} /dt$. This express...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on algebraic and discrete methods 1986-04, Vol.7 (2), p.273-281
Hauptverfasser: GOLUB, G. H, MEYER, C. D. JR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 2
container_start_page 273
container_title SIAM journal on algebraic and discrete methods
container_volume 7
creator GOLUB, G. H
MEYER, C. D. JR
description For an $n$-state finite, homogeneous, ergodic Markov chain, with transition matrix ${\bf P}$ and stationary distribution ${\boldsymbol \pi} $ we assume that the entries of ${\bf P}$ are differentiable functions of a parameter $t$ and we obtain an expression for $d{\boldsymbol \pi} /dt$. This expression is given in terms of the group inverse of ${\bf I} - {\bf P}$ and is used in a sensitivity analysis of ${\boldsymbol \pi}$. Finally, it is demonstrated how a ${\boldsymbol QR}$ factorization can be used to simultaneously compute the stationary distribution of an ergodic chain along with estimates which gauge the sensitivity of the stationary distribution to perturbations in the transition probabilities.
doi_str_mv 10.1137/0607031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925834377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596040541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-bda73725a7907209992a5b90ce3662b819d4d225df46bc72c98cca111206adcd3</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKv4CkEEb1zNYXezuZTiCSqiWPBumc0mbWqb1CQt1Ofwgd0e8Gr4Zz7-mfkROqfkhlIubklJBOH0APUYLauM58XnIeoRKsusYJQdo5MYp4TwgnHaQ7-jaN0Yp4nGb-_YgEo-2B9I1jsMrsXj4JcLbN1Kh7jpJY-Vny-WSV_j1hqjg3bJwkZucB2TnXdqaxi1izbZlU1r7A2OaWsLYY0XwTfQ2Fk31REbH_ALhC-_wmoC1sVTdGRgFvXZvvbR6OH-Y_CUDV8fnwd3w0wxIVLWtCC4YAUISQQjUkoGRSOJ0rwsWVNR2eYtY0Vr8rJRgilZKQWUUkZKaFXL--hi59vd873sbq-nfhlct7KWrKh4zoXooKsdpIKPMWhTL0L3Y1jXlNSbxOt94h15ubeDqGBmAjhl4z9eCUJIXvI_--iCBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925834377</pqid></control><display><type>article</type><title>Using the QR factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains</title><source>SIAM Journals Online</source><creator>GOLUB, G. H ; MEYER, C. D. JR</creator><creatorcontrib>GOLUB, G. H ; MEYER, C. D. JR</creatorcontrib><description>For an $n$-state finite, homogeneous, ergodic Markov chain, with transition matrix ${\bf P}$ and stationary distribution ${\boldsymbol \pi} $ we assume that the entries of ${\bf P}$ are differentiable functions of a parameter $t$ and we obtain an expression for $d{\boldsymbol \pi} /dt$. This expression is given in terms of the group inverse of ${\bf I} - {\bf P}$ and is used in a sensitivity analysis of ${\boldsymbol \pi}$. Finally, it is demonstrated how a ${\boldsymbol QR}$ factorization can be used to simultaneously compute the stationary distribution of an ergodic chain along with estimates which gauge the sensitivity of the stationary distribution to perturbations in the transition probabilities.</description><identifier>ISSN: 0196-5212</identifier><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 2168-345X</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/0607031</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Exact sciences and technology ; Markov analysis ; Markov processes ; Mathematics ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Sensitivity analysis</subject><ispartof>SIAM journal on algebraic and discrete methods, 1986-04, Vol.7 (2), p.273-281</ispartof><rights>1986 INIST-CNRS</rights><rights>[Copyright] © 1986 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-bda73725a7907209992a5b90ce3662b819d4d225df46bc72c98cca111206adcd3</citedby><cites>FETCH-LOGICAL-c277t-bda73725a7907209992a5b90ce3662b819d4d225df46bc72c98cca111206adcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8700046$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GOLUB, G. H</creatorcontrib><creatorcontrib>MEYER, C. D. JR</creatorcontrib><title>Using the QR factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains</title><title>SIAM journal on algebraic and discrete methods</title><description>For an $n$-state finite, homogeneous, ergodic Markov chain, with transition matrix ${\bf P}$ and stationary distribution ${\boldsymbol \pi} $ we assume that the entries of ${\bf P}$ are differentiable functions of a parameter $t$ and we obtain an expression for $d{\boldsymbol \pi} /dt$. This expression is given in terms of the group inverse of ${\bf I} - {\bf P}$ and is used in a sensitivity analysis of ${\boldsymbol \pi}$. Finally, it is demonstrated how a ${\boldsymbol QR}$ factorization can be used to simultaneously compute the stationary distribution of an ergodic chain along with estimates which gauge the sensitivity of the stationary distribution to perturbations in the transition probabilities.</description><subject>Exact sciences and technology</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Sensitivity analysis</subject><issn>0196-5212</issn><issn>0895-4798</issn><issn>2168-345X</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kNtKAzEQhoMoWKv4CkEEb1zNYXezuZTiCSqiWPBumc0mbWqb1CQt1Ofwgd0e8Gr4Zz7-mfkROqfkhlIubklJBOH0APUYLauM58XnIeoRKsusYJQdo5MYp4TwgnHaQ7-jaN0Yp4nGb-_YgEo-2B9I1jsMrsXj4JcLbN1Kh7jpJY-Vny-WSV_j1hqjg3bJwkZucB2TnXdqaxi1izbZlU1r7A2OaWsLYY0XwTfQ2Fk31REbH_ALhC-_wmoC1sVTdGRgFvXZvvbR6OH-Y_CUDV8fnwd3w0wxIVLWtCC4YAUISQQjUkoGRSOJ0rwsWVNR2eYtY0Vr8rJRgilZKQWUUkZKaFXL--hi59vd873sbq-nfhlct7KWrKh4zoXooKsdpIKPMWhTL0L3Y1jXlNSbxOt94h15ubeDqGBmAjhl4z9eCUJIXvI_--iCBA</recordid><startdate>19860401</startdate><enddate>19860401</enddate><creator>GOLUB, G. H</creator><creator>MEYER, C. D. JR</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19860401</creationdate><title>Using the QR factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains</title><author>GOLUB, G. H ; MEYER, C. D. JR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-bda73725a7907209992a5b90ce3662b819d4d225df46bc72c98cca111206adcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Exact sciences and technology</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOLUB, G. H</creatorcontrib><creatorcontrib>MEYER, C. D. JR</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on algebraic and discrete methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOLUB, G. H</au><au>MEYER, C. D. JR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the QR factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains</atitle><jtitle>SIAM journal on algebraic and discrete methods</jtitle><date>1986-04-01</date><risdate>1986</risdate><volume>7</volume><issue>2</issue><spage>273</spage><epage>281</epage><pages>273-281</pages><issn>0196-5212</issn><issn>0895-4798</issn><eissn>2168-345X</eissn><eissn>1095-7162</eissn><abstract>For an $n$-state finite, homogeneous, ergodic Markov chain, with transition matrix ${\bf P}$ and stationary distribution ${\boldsymbol \pi} $ we assume that the entries of ${\bf P}$ are differentiable functions of a parameter $t$ and we obtain an expression for $d{\boldsymbol \pi} /dt$. This expression is given in terms of the group inverse of ${\bf I} - {\bf P}$ and is used in a sensitivity analysis of ${\boldsymbol \pi}$. Finally, it is demonstrated how a ${\boldsymbol QR}$ factorization can be used to simultaneously compute the stationary distribution of an ergodic chain along with estimates which gauge the sensitivity of the stationary distribution to perturbations in the transition probabilities.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0607031</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-5212
ispartof SIAM journal on algebraic and discrete methods, 1986-04, Vol.7 (2), p.273-281
issn 0196-5212
0895-4798
2168-345X
1095-7162
language eng
recordid cdi_proquest_journals_925834377
source SIAM Journals Online
subjects Exact sciences and technology
Markov analysis
Markov processes
Mathematics
Probability
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Sensitivity analysis
title Using the QR factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20QR%20factorization%20and%20group%20inversion%20to%20compute,%20differentiate,%20and%20estimate%20the%20sensitivity%20of%20stationary%20probabilities%20for%20Markov%20chains&rft.jtitle=SIAM%20journal%20on%20algebraic%20and%20discrete%20methods&rft.au=GOLUB,%20G.%20H&rft.date=1986-04-01&rft.volume=7&rft.issue=2&rft.spage=273&rft.epage=281&rft.pages=273-281&rft.issn=0196-5212&rft.eissn=2168-345X&rft_id=info:doi/10.1137/0607031&rft_dat=%3Cproquest_cross%3E2596040541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925834377&rft_id=info:pmid/&rfr_iscdi=true