Stochastic shortest path games
We consider dynamic, two-player, zero-sum games where the "minimizing" player seeks to drive an underlying finite-state dynamic system to a special terminal state along a least expected cost path. The "maximizer" seeks to interfere with the minimizer's progress so as to maxi...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1999, Vol.37 (3), p.804-824 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 3 |
container_start_page | 804 |
container_title | SIAM journal on control and optimization |
container_volume | 37 |
creator | PATEK, S. D BERTSEKAS, D. P |
description | We consider dynamic, two-player, zero-sum games where the "minimizing" player seeks to drive an underlying finite-state dynamic system to a special terminal state along a least expected cost path. The "maximizer" seeks to interfere with the minimizer's progress so as to maximize the expected total cost. We consider, for the first time, undiscounted finite-state problems, with compact action spaces, and transition costs that are not strictly positive. We admit that there are policies for the minimizer which permit the maximizer to prolong the game indefinitely. Under assumptions which generalize deterministic shortest path problems, we establish (i) the existence of a real-valued equilibrium cost vector achievable with stationary policies for the opposing players and (ii) the convergence of value iteration and policy iteration to the unique solution of Bellmans equation. |
doi_str_mv | 10.1137/S0363012996299557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925834205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600554431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-645577f28206304cac0b8d1fdc32de755672643815d1bc330e7e5662d0a78c6a3</originalsourceid><addsrcrecordid>eNplUMtKw0AUHUTBWP0ANxLEbfTeeWcpxRcUXFTXw3QyMSltE2emC__eCS24cHG5i_PkEHKNcI_I1MMSmGSAtK5lPiHUCSkQalEpZPqUFBNcTfg5uYhxDYCcIy_IzTINrrMx9a6M3RCSj6kcberKL7v18ZKctXYT_dXxz8jn89PH_LVavL-8zR8XlWOcpkrynKhaqinkFtxZByvdYNs4RhuvhJCKSs40igZXjjHwygspaQNWaSctm5Hbg-8Yhu997mDWwz7scqSpqdA5BEQm4YHkwhBj8K0ZQ7-14ccgmGkF82-FrLk7Gtvo7KYNduf6-CfUDIUC9gujFlkb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925834205</pqid></control><display><type>article</type><title>Stochastic shortest path games</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>PATEK, S. D ; BERTSEKAS, D. P</creator><creatorcontrib>PATEK, S. D ; BERTSEKAS, D. P</creatorcontrib><description>We consider dynamic, two-player, zero-sum games where the "minimizing" player seeks to drive an underlying finite-state dynamic system to a special terminal state along a least expected cost path. The "maximizer" seeks to interfere with the minimizer's progress so as to maximize the expected total cost. We consider, for the first time, undiscounted finite-state problems, with compact action spaces, and transition costs that are not strictly positive. We admit that there are policies for the minimizer which permit the maximizer to prolong the game indefinitely. Under assumptions which generalize deterministic shortest path problems, we establish (i) the existence of a real-valued equilibrium cost vector achievable with stationary policies for the opposing players and (ii) the convergence of value iteration and policy iteration to the unique solution of Bellmans equation.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/S0363012996299557</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Applied sciences ; Costs ; Equilibrium ; Exact sciences and technology ; Game theory ; Games ; Operational research and scientific management ; Operational research. Management science ; Probability ; Scholarships & fellowships</subject><ispartof>SIAM journal on control and optimization, 1999, Vol.37 (3), p.804-824</ispartof><rights>1999 INIST-CNRS</rights><rights>[Copyright] © 1999 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-645577f28206304cac0b8d1fdc32de755672643815d1bc330e7e5662d0a78c6a3</citedby><cites>FETCH-LOGICAL-c342t-645577f28206304cac0b8d1fdc32de755672643815d1bc330e7e5662d0a78c6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1831570$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PATEK, S. D</creatorcontrib><creatorcontrib>BERTSEKAS, D. P</creatorcontrib><title>Stochastic shortest path games</title><title>SIAM journal on control and optimization</title><description>We consider dynamic, two-player, zero-sum games where the "minimizing" player seeks to drive an underlying finite-state dynamic system to a special terminal state along a least expected cost path. The "maximizer" seeks to interfere with the minimizer's progress so as to maximize the expected total cost. We consider, for the first time, undiscounted finite-state problems, with compact action spaces, and transition costs that are not strictly positive. We admit that there are policies for the minimizer which permit the maximizer to prolong the game indefinitely. Under assumptions which generalize deterministic shortest path problems, we establish (i) the existence of a real-valued equilibrium cost vector achievable with stationary policies for the opposing players and (ii) the convergence of value iteration and policy iteration to the unique solution of Bellmans equation.</description><subject>Applied mathematics</subject><subject>Applied sciences</subject><subject>Costs</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Games</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability</subject><subject>Scholarships & fellowships</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUMtKw0AUHUTBWP0ANxLEbfTeeWcpxRcUXFTXw3QyMSltE2emC__eCS24cHG5i_PkEHKNcI_I1MMSmGSAtK5lPiHUCSkQalEpZPqUFBNcTfg5uYhxDYCcIy_IzTINrrMx9a6M3RCSj6kcberKL7v18ZKctXYT_dXxz8jn89PH_LVavL-8zR8XlWOcpkrynKhaqinkFtxZByvdYNs4RhuvhJCKSs40igZXjjHwygspaQNWaSctm5Hbg-8Yhu997mDWwz7scqSpqdA5BEQm4YHkwhBj8K0ZQ7-14ccgmGkF82-FrLk7Gtvo7KYNduf6-CfUDIUC9gujFlkb</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>PATEK, S. D</creator><creator>BERTSEKAS, D. P</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>1999</creationdate><title>Stochastic shortest path games</title><author>PATEK, S. D ; BERTSEKAS, D. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-645577f28206304cac0b8d1fdc32de755672643815d1bc330e7e5662d0a78c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied mathematics</topic><topic>Applied sciences</topic><topic>Costs</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Games</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability</topic><topic>Scholarships & fellowships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PATEK, S. D</creatorcontrib><creatorcontrib>BERTSEKAS, D. P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PATEK, S. D</au><au>BERTSEKAS, D. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic shortest path games</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1999</date><risdate>1999</risdate><volume>37</volume><issue>3</issue><spage>804</spage><epage>824</epage><pages>804-824</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>We consider dynamic, two-player, zero-sum games where the "minimizing" player seeks to drive an underlying finite-state dynamic system to a special terminal state along a least expected cost path. The "maximizer" seeks to interfere with the minimizer's progress so as to maximize the expected total cost. We consider, for the first time, undiscounted finite-state problems, with compact action spaces, and transition costs that are not strictly positive. We admit that there are policies for the minimizer which permit the maximizer to prolong the game indefinitely. Under assumptions which generalize deterministic shortest path problems, we establish (i) the existence of a real-valued equilibrium cost vector achievable with stationary policies for the opposing players and (ii) the convergence of value iteration and policy iteration to the unique solution of Bellmans equation.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0363012996299557</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 1999, Vol.37 (3), p.804-824 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_journals_925834205 |
source | SIAM Journals Online; Business Source Complete |
subjects | Applied mathematics Applied sciences Costs Equilibrium Exact sciences and technology Game theory Games Operational research and scientific management Operational research. Management science Probability Scholarships & fellowships |
title | Stochastic shortest path games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20shortest%20path%20games&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=PATEK,%20S.%20D&rft.date=1999&rft.volume=37&rft.issue=3&rft.spage=804&rft.epage=824&rft.pages=804-824&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/S0363012996299557&rft_dat=%3Cproquest_cross%3E2600554431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925834205&rft_id=info:pmid/&rfr_iscdi=true |