A new projection method for variational inequality problems

We propose a new projection algorithm for solving the variational inequality problem, where the underlying function is continuous and satisfies a certain generalized monotonicity assumption (e.g., it can be pseudomonotone). The method is simple and admits a nice geometric interpretation. It consists...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1999, Vol.37 (3), p.765-776
Hauptverfasser: SOLODOV, M. V, SVAITER, B. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 776
container_issue 3
container_start_page 765
container_title SIAM journal on control and optimization
container_volume 37
creator SOLODOV, M. V
SVAITER, B. F
description We propose a new projection algorithm for solving the variational inequality problem, where the underlying function is continuous and satisfies a certain generalized monotonicity assumption (e.g., it can be pseudomonotone). The method is simple and admits a nice geometric interpretation. It consists of two steps. First, we construct an appropriate hyperplane which strictly separates the current iterate from the solutions of the problem. This procedure requires a single projection onto the feasible set and employs an Armijo-type linesearch along a feasible direction. Then the next iterate is obtained as the projection of the current iterate onto the intersection of the feasible set with the halfspace containing the solution set. Thus, in contrast with most other projection-type methods, only two projection operations per iteration are needed. The method is shown to be globally convergent to a solution of the variational inequality problem under minimal assumptions. Preliminary computational experience is also reported.
doi_str_mv 10.1137/s0363012997317475
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925834092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600554411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-615425452d81eef7284593c1c409994ae8dbfdd606d25a90cfa963700bce47853</originalsourceid><addsrcrecordid>eNpdkFtLxDAQhYMouK7-AN-K-FqdyaVJ8GlZvMGCD-pzSdMEW3rZTVpl_70tuyD4NDDfOWeGQ8g1wh0ik_cRWMYAqdaSoeRSnJAFghapRKZOyWLG6czPyUWMNQByjnxBHlZJ536SbehrZ4eq75LWDV99mfg-JN8mVGZemiapOrcbTVMN-1lcNK6Nl-TMmya6q-Ncks-nx4_1S7p5e35drzap5aCGNEPBqeCClgqd85IqLjSzOFGtNTdOlYUvywyykgqjwXqjMyYBCuu4VIItyc0hdzq8G10c8rofw_RUzDUVik05dBLhQWRDH2NwPt-GqjVhnyPkc0X5-_-KJs_tMdhEaxofTGer-GdUjAIX7BdHKWSb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925834092</pqid></control><display><type>article</type><title>A new projection method for variational inequality problems</title><source>SIAM Journals Online</source><source>EBSCOhost Business Source Complete</source><creator>SOLODOV, M. V ; SVAITER, B. F</creator><creatorcontrib>SOLODOV, M. V ; SVAITER, B. F</creatorcontrib><description>We propose a new projection algorithm for solving the variational inequality problem, where the underlying function is continuous and satisfies a certain generalized monotonicity assumption (e.g., it can be pseudomonotone). The method is simple and admits a nice geometric interpretation. It consists of two steps. First, we construct an appropriate hyperplane which strictly separates the current iterate from the solutions of the problem. This procedure requires a single projection onto the feasible set and employs an Armijo-type linesearch along a feasible direction. Then the next iterate is obtained as the projection of the current iterate onto the intersection of the feasible set with the halfspace containing the solution set. Thus, in contrast with most other projection-type methods, only two projection operations per iteration are needed. The method is shown to be globally convergent to a solution of the variational inequality problem under minimal assumptions. Preliminary computational experience is also reported.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/s0363012997317475</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied sciences ; Exact sciences and technology ; Methods ; Operational research and scientific management ; Operational research. Management science ; Optimization. Search problems</subject><ispartof>SIAM journal on control and optimization, 1999, Vol.37 (3), p.765-776</ispartof><rights>1999 INIST-CNRS</rights><rights>[Copyright] © 1999 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-615425452d81eef7284593c1c409994ae8dbfdd606d25a90cfa963700bce47853</citedby><cites>FETCH-LOGICAL-c408t-615425452d81eef7284593c1c409994ae8dbfdd606d25a90cfa963700bce47853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1832045$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SOLODOV, M. V</creatorcontrib><creatorcontrib>SVAITER, B. F</creatorcontrib><title>A new projection method for variational inequality problems</title><title>SIAM journal on control and optimization</title><description>We propose a new projection algorithm for solving the variational inequality problem, where the underlying function is continuous and satisfies a certain generalized monotonicity assumption (e.g., it can be pseudomonotone). The method is simple and admits a nice geometric interpretation. It consists of two steps. First, we construct an appropriate hyperplane which strictly separates the current iterate from the solutions of the problem. This procedure requires a single projection onto the feasible set and employs an Armijo-type linesearch along a feasible direction. Then the next iterate is obtained as the projection of the current iterate onto the intersection of the feasible set with the halfspace containing the solution set. Thus, in contrast with most other projection-type methods, only two projection operations per iteration are needed. The method is shown to be globally convergent to a solution of the variational inequality problem under minimal assumptions. Preliminary computational experience is also reported.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization. Search problems</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkFtLxDAQhYMouK7-AN-K-FqdyaVJ8GlZvMGCD-pzSdMEW3rZTVpl_70tuyD4NDDfOWeGQ8g1wh0ik_cRWMYAqdaSoeRSnJAFghapRKZOyWLG6czPyUWMNQByjnxBHlZJ536SbehrZ4eq75LWDV99mfg-JN8mVGZemiapOrcbTVMN-1lcNK6Nl-TMmya6q-Ncks-nx4_1S7p5e35drzap5aCGNEPBqeCClgqd85IqLjSzOFGtNTdOlYUvywyykgqjwXqjMyYBCuu4VIItyc0hdzq8G10c8rofw_RUzDUVik05dBLhQWRDH2NwPt-GqjVhnyPkc0X5-_-KJs_tMdhEaxofTGer-GdUjAIX7BdHKWSb</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>SOLODOV, M. V</creator><creator>SVAITER, B. F</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>1999</creationdate><title>A new projection method for variational inequality problems</title><author>SOLODOV, M. V ; SVAITER, B. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-615425452d81eef7284593c1c409994ae8dbfdd606d25a90cfa963700bce47853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization. Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SOLODOV, M. V</creatorcontrib><creatorcontrib>SVAITER, B. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SOLODOV, M. V</au><au>SVAITER, B. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new projection method for variational inequality problems</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1999</date><risdate>1999</risdate><volume>37</volume><issue>3</issue><spage>765</spage><epage>776</epage><pages>765-776</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>We propose a new projection algorithm for solving the variational inequality problem, where the underlying function is continuous and satisfies a certain generalized monotonicity assumption (e.g., it can be pseudomonotone). The method is simple and admits a nice geometric interpretation. It consists of two steps. First, we construct an appropriate hyperplane which strictly separates the current iterate from the solutions of the problem. This procedure requires a single projection onto the feasible set and employs an Armijo-type linesearch along a feasible direction. Then the next iterate is obtained as the projection of the current iterate onto the intersection of the feasible set with the halfspace containing the solution set. Thus, in contrast with most other projection-type methods, only two projection operations per iteration are needed. The method is shown to be globally convergent to a solution of the variational inequality problem under minimal assumptions. Preliminary computational experience is also reported.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0363012997317475</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 1999, Vol.37 (3), p.765-776
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_925834092
source SIAM Journals Online; EBSCOhost Business Source Complete
subjects Algorithms
Applied sciences
Exact sciences and technology
Methods
Operational research and scientific management
Operational research. Management science
Optimization. Search problems
title A new projection method for variational inequality problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20projection%20method%20for%20variational%20inequality%20problems&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=SOLODOV,%20M.%20V&rft.date=1999&rft.volume=37&rft.issue=3&rft.spage=765&rft.epage=776&rft.pages=765-776&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/s0363012997317475&rft_dat=%3Cproquest_cross%3E2600554411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925834092&rft_id=info:pmid/&rfr_iscdi=true