Tools for semiglobal stabilization by partial state and output feedback

We develop tools for uniform semiglobal stabilization by partial state and output feedback. We show, by means of examples, that these tools are useful for solving a variety of problems. One application is a general result on semiglobal output feedback stabilizability when global state feedback stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1995-09, Vol.33 (5), p.1443-1488
Hauptverfasser: TEEL, A, PRALY, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1488
container_issue 5
container_start_page 1443
container_title SIAM journal on control and optimization
container_volume 33
creator TEEL, A
PRALY, L
description We develop tools for uniform semiglobal stabilization by partial state and output feedback. We show, by means of examples, that these tools are useful for solving a variety of problems. One application is a general result on semiglobal output feedback stabilizability when global state feedback stabilizability is achievable by a control function that is uniformly completely observable. We provide more general results on semiglobal output feedback stabilization as well. Globally minimum phase input--output linearizable systems are considered as a special case. Throughout our discussion we demonstrate the usefulness of considering local convergence separate from boundedness of solutions. For the former we employ a sufficient small gain condition guaranteeing convergence. For the latter we rely on Lyapunov techniques.
doi_str_mv 10.1137/s0363012992241430
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925831733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600640791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-3251b9705df037eabf6b426fcbee2da09c52e6331ca59d0c0b13fff507fbb8663</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEuXxA9gsxBrw9Y2dekQVFKRKDJQ5sh0bpaRxsJ2h_HpStWJgOsN3HtIh5AbYPQBWD4mhRAZcKc5LKJGdkBkwJYoKcH5KZntc7Pk5uUhpwxiUk21GlusQukR9iDS5bfvZBaM7mrI2bdf-6NyGnpodHXTM7QFkR3Xf0DDmYczUO9cYbb-uyJnXXXLXR70kH89P68VLsXpbvi4eV4VFKXKBXIBRFRONZ1g5bbw0JZfeGud4o5mygjuJCFYL1TDLDKD3XrDKGzOXEi_J7aF3iOF7dCnXmzDGfpqsFRdzhApxMsHBZGNIKTpfD7Hd6rirgdX7u-r3_3dNmbtjsU5Wdz7q3rbpL4hyGleAv7Vkag8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925831733</pqid></control><display><type>article</type><title>Tools for semiglobal stabilization by partial state and output feedback</title><source>SIAM Journals</source><creator>TEEL, A ; PRALY, L</creator><creatorcontrib>TEEL, A ; PRALY, L</creatorcontrib><description>We develop tools for uniform semiglobal stabilization by partial state and output feedback. We show, by means of examples, that these tools are useful for solving a variety of problems. One application is a general result on semiglobal output feedback stabilizability when global state feedback stabilizability is achievable by a control function that is uniformly completely observable. We provide more general results on semiglobal output feedback stabilization as well. Globally minimum phase input--output linearizable systems are considered as a special case. Throughout our discussion we demonstrate the usefulness of considering local convergence separate from boundedness of solutions. For the former we employ a sufficient small gain condition guaranteeing convergence. For the latter we rely on Lyapunov techniques.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/s0363012992241430</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Codes ; Computer science; control theory; systems ; Control theory. Systems ; Dynamical systems ; Equilibrium ; Exact sciences and technology ; Ordinary differential equations ; System theory</subject><ispartof>SIAM journal on control and optimization, 1995-09, Vol.33 (5), p.1443-1488</ispartof><rights>1995 INIST-CNRS</rights><rights>[Copyright] © 1995 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-3251b9705df037eabf6b426fcbee2da09c52e6331ca59d0c0b13fff507fbb8663</citedby><cites>FETCH-LOGICAL-c365t-3251b9705df037eabf6b426fcbee2da09c52e6331ca59d0c0b13fff507fbb8663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3188,27933,27934</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3666391$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TEEL, A</creatorcontrib><creatorcontrib>PRALY, L</creatorcontrib><title>Tools for semiglobal stabilization by partial state and output feedback</title><title>SIAM journal on control and optimization</title><description>We develop tools for uniform semiglobal stabilization by partial state and output feedback. We show, by means of examples, that these tools are useful for solving a variety of problems. One application is a general result on semiglobal output feedback stabilizability when global state feedback stabilizability is achievable by a control function that is uniformly completely observable. We provide more general results on semiglobal output feedback stabilization as well. Globally minimum phase input--output linearizable systems are considered as a special case. Throughout our discussion we demonstrate the usefulness of considering local convergence separate from boundedness of solutions. For the former we employ a sufficient small gain condition guaranteeing convergence. For the latter we rely on Lyapunov techniques.</description><subject>Applied sciences</subject><subject>Codes</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Dynamical systems</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Ordinary differential equations</subject><subject>System theory</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkDtPwzAUhS0EEuXxA9gsxBrw9Y2dekQVFKRKDJQ5sh0bpaRxsJ2h_HpStWJgOsN3HtIh5AbYPQBWD4mhRAZcKc5LKJGdkBkwJYoKcH5KZntc7Pk5uUhpwxiUk21GlusQukR9iDS5bfvZBaM7mrI2bdf-6NyGnpodHXTM7QFkR3Xf0DDmYczUO9cYbb-uyJnXXXLXR70kH89P68VLsXpbvi4eV4VFKXKBXIBRFRONZ1g5bbw0JZfeGud4o5mygjuJCFYL1TDLDKD3XrDKGzOXEi_J7aF3iOF7dCnXmzDGfpqsFRdzhApxMsHBZGNIKTpfD7Hd6rirgdX7u-r3_3dNmbtjsU5Wdz7q3rbpL4hyGleAv7Vkag8</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>TEEL, A</creator><creator>PRALY, L</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19950901</creationdate><title>Tools for semiglobal stabilization by partial state and output feedback</title><author>TEEL, A ; PRALY, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-3251b9705df037eabf6b426fcbee2da09c52e6331ca59d0c0b13fff507fbb8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Codes</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Dynamical systems</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Ordinary differential equations</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TEEL, A</creatorcontrib><creatorcontrib>PRALY, L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TEEL, A</au><au>PRALY, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tools for semiglobal stabilization by partial state and output feedback</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1995-09-01</date><risdate>1995</risdate><volume>33</volume><issue>5</issue><spage>1443</spage><epage>1488</epage><pages>1443-1488</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>We develop tools for uniform semiglobal stabilization by partial state and output feedback. We show, by means of examples, that these tools are useful for solving a variety of problems. One application is a general result on semiglobal output feedback stabilizability when global state feedback stabilizability is achievable by a control function that is uniformly completely observable. We provide more general results on semiglobal output feedback stabilization as well. Globally minimum phase input--output linearizable systems are considered as a special case. Throughout our discussion we demonstrate the usefulness of considering local convergence separate from boundedness of solutions. For the former we employ a sufficient small gain condition guaranteeing convergence. For the latter we rely on Lyapunov techniques.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0363012992241430</doi><tpages>46</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 1995-09, Vol.33 (5), p.1443-1488
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_925831733
source SIAM Journals
subjects Applied sciences
Codes
Computer science
control theory
systems
Control theory. Systems
Dynamical systems
Equilibrium
Exact sciences and technology
Ordinary differential equations
System theory
title Tools for semiglobal stabilization by partial state and output feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tools%20for%20semiglobal%20stabilization%20by%20partial%20state%20and%20output%20feedback&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=TEEL,%20A&rft.date=1995-09-01&rft.volume=33&rft.issue=5&rft.spage=1443&rft.epage=1488&rft.pages=1443-1488&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/s0363012992241430&rft_dat=%3Cproquest_cross%3E2600640791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925831733&rft_id=info:pmid/&rfr_iscdi=true