On a certain parameter of the discretized extended linear-quadratic problem of optimal control

The number $\gamma : = \| {\hat Q^{ - \frac{1}{2}} \hat R\hat P^{ - \frac{1} {2}} } \|$ is an important parameter for the extended linear-quadratic programming (ELQP) problem associated with the Lagrangian $L(\hat u,\hat v) = \hat p\cdot \hat u + \frac{1}{2}\hat u \cdot \hat P\hat u + \hat q \cdot \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1996, Vol.34 (1), p.62-73
1. Verfasser: Zhu, Ciyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 62
container_title SIAM journal on control and optimization
container_volume 34
creator Zhu, Ciyou
description The number $\gamma : = \| {\hat Q^{ - \frac{1}{2}} \hat R\hat P^{ - \frac{1} {2}} } \|$ is an important parameter for the extended linear-quadratic programming (ELQP) problem associated with the Lagrangian $L(\hat u,\hat v) = \hat p\cdot \hat u + \frac{1}{2}\hat u \cdot \hat P\hat u + \hat q \cdot \hat v - \frac{1}{2}\hat v \cdot \hat Q\hat v - \hat v \cdot \hat R\hat u$ over polyhedral sets $\hat U \times \hat V$. Some fundamental properties of the problem, as well as the convergence rates of certain newly developed algorithms for large-scale ELQP, are all related to $\gamma $. In this paper, we derive an estimate of $\gamma $ for the ELQP problems resulting from discretization of an optimal control problem. We prove that the parameter $\gamma $ of the discretized problem is bounded independently of the number of subintervals in the discretization.
doi_str_mv 10.1137/S0363012993252711
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925828312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600622291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-6c5c4331737f71cbc1a1c29bd023d4d2727c62d2235fc28bb37881e4eceee50e3</originalsourceid><addsrcrecordid>eNplUE1LxDAQDaLguvoDvAXxWs0kbdMeZdFVWNiDerWkkyl26bbdJAvqrzdlFy-e5sH7mMdj7BrEHYDS969C5UqALEslM6kBTtgMRJklGlRxymYTnUz8ObvwfiMEpCmkM_ax7rnhSC6YtuejcWZLgRwfGh4-idvWo6PQ_pDl9BWotxF0bU_GJbu9sc6EFvnohrqj7WQaxtBuTcdx6IMbukt21pjO09Xxztn70-Pb4jlZrZcvi4dVgrFxSHLMMFUKtNKNBqwRDESmtkIqm1qppcZcWilV1qAs6lrpogBKCYkoE6Tm7OaQG6vs9uRDtRn2ro8vq1JmhSwUyCiCgwjd4L2jphpdLOu-KxDVtGL1b8XouT0GG4-ma5zpsfV_RlkWeS5K9QuhDnHu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925828312</pqid></control><display><type>article</type><title>On a certain parameter of the discretized extended linear-quadratic problem of optimal control</title><source>SIAM Journals Online</source><creator>Zhu, Ciyou</creator><creatorcontrib>Zhu, Ciyou</creatorcontrib><description>The number $\gamma : = \| {\hat Q^{ - \frac{1}{2}} \hat R\hat P^{ - \frac{1} {2}} } \|$ is an important parameter for the extended linear-quadratic programming (ELQP) problem associated with the Lagrangian $L(\hat u,\hat v) = \hat p\cdot \hat u + \frac{1}{2}\hat u \cdot \hat P\hat u + \hat q \cdot \hat v - \frac{1}{2}\hat v \cdot \hat Q\hat v - \hat v \cdot \hat R\hat u$ over polyhedral sets $\hat U \times \hat V$. Some fundamental properties of the problem, as well as the convergence rates of certain newly developed algorithms for large-scale ELQP, are all related to $\gamma $. In this paper, we derive an estimate of $\gamma $ for the ELQP problems resulting from discretization of an optimal control problem. We prove that the parameter $\gamma $ of the discretized problem is bounded independently of the number of subintervals in the discretization.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/S0363012993252711</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Optimal control ; Quadratic programming</subject><ispartof>SIAM journal on control and optimization, 1996, Vol.34 (1), p.62-73</ispartof><rights>1996 INIST-CNRS</rights><rights>[Copyright] © 1996 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-6c5c4331737f71cbc1a1c29bd023d4d2727c62d2235fc28bb37881e4eceee50e3</citedby><cites>FETCH-LOGICAL-c299t-6c5c4331737f71cbc1a1c29bd023d4d2727c62d2235fc28bb37881e4eceee50e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2986609$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Ciyou</creatorcontrib><title>On a certain parameter of the discretized extended linear-quadratic problem of optimal control</title><title>SIAM journal on control and optimization</title><description>The number $\gamma : = \| {\hat Q^{ - \frac{1}{2}} \hat R\hat P^{ - \frac{1} {2}} } \|$ is an important parameter for the extended linear-quadratic programming (ELQP) problem associated with the Lagrangian $L(\hat u,\hat v) = \hat p\cdot \hat u + \frac{1}{2}\hat u \cdot \hat P\hat u + \hat q \cdot \hat v - \frac{1}{2}\hat v \cdot \hat Q\hat v - \hat v \cdot \hat R\hat u$ over polyhedral sets $\hat U \times \hat V$. Some fundamental properties of the problem, as well as the convergence rates of certain newly developed algorithms for large-scale ELQP, are all related to $\gamma $. In this paper, we derive an estimate of $\gamma $ for the ELQP problems resulting from discretization of an optimal control problem. We prove that the parameter $\gamma $ of the discretized problem is bounded independently of the number of subintervals in the discretization.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Optimal control</subject><subject>Quadratic programming</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUE1LxDAQDaLguvoDvAXxWs0kbdMeZdFVWNiDerWkkyl26bbdJAvqrzdlFy-e5sH7mMdj7BrEHYDS969C5UqALEslM6kBTtgMRJklGlRxymYTnUz8ObvwfiMEpCmkM_ax7rnhSC6YtuejcWZLgRwfGh4-idvWo6PQ_pDl9BWotxF0bU_GJbu9sc6EFvnohrqj7WQaxtBuTcdx6IMbukt21pjO09Xxztn70-Pb4jlZrZcvi4dVgrFxSHLMMFUKtNKNBqwRDESmtkIqm1qppcZcWilV1qAs6lrpogBKCYkoE6Tm7OaQG6vs9uRDtRn2ro8vq1JmhSwUyCiCgwjd4L2jphpdLOu-KxDVtGL1b8XouT0GG4-ma5zpsfV_RlkWeS5K9QuhDnHu</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Zhu, Ciyou</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>1996</creationdate><title>On a certain parameter of the discretized extended linear-quadratic problem of optimal control</title><author>Zhu, Ciyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-6c5c4331737f71cbc1a1c29bd023d4d2727c62d2235fc28bb37881e4eceee50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Optimal control</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ciyou</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Ciyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a certain parameter of the discretized extended linear-quadratic problem of optimal control</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1996</date><risdate>1996</risdate><volume>34</volume><issue>1</issue><spage>62</spage><epage>73</epage><pages>62-73</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>The number $\gamma : = \| {\hat Q^{ - \frac{1}{2}} \hat R\hat P^{ - \frac{1} {2}} } \|$ is an important parameter for the extended linear-quadratic programming (ELQP) problem associated with the Lagrangian $L(\hat u,\hat v) = \hat p\cdot \hat u + \frac{1}{2}\hat u \cdot \hat P\hat u + \hat q \cdot \hat v - \frac{1}{2}\hat v \cdot \hat Q\hat v - \hat v \cdot \hat R\hat u$ over polyhedral sets $\hat U \times \hat V$. Some fundamental properties of the problem, as well as the convergence rates of certain newly developed algorithms for large-scale ELQP, are all related to $\gamma $. In this paper, we derive an estimate of $\gamma $ for the ELQP problems resulting from discretization of an optimal control problem. We prove that the parameter $\gamma $ of the discretized problem is bounded independently of the number of subintervals in the discretization.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0363012993252711</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 1996, Vol.34 (1), p.62-73
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_925828312
source SIAM Journals Online
subjects Algorithms
Applied sciences
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Optimal control
Quadratic programming
title On a certain parameter of the discretized extended linear-quadratic problem of optimal control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20certain%20parameter%20of%20the%20discretized%20extended%20linear-quadratic%20problem%20of%20optimal%20control&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Zhu,%20Ciyou&rft.date=1996&rft.volume=34&rft.issue=1&rft.spage=62&rft.epage=73&rft.pages=62-73&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/S0363012993252711&rft_dat=%3Cproquest_cross%3E2600622291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925828312&rft_id=info:pmid/&rfr_iscdi=true