Uniqueness of Lower Semicontinuous Viscosity Solutions for the Minimum Time Problem

We obtain the uniqueness of lower semicontinuous (LSC) viscosity solutions of the transformed minimum time problem assuming that they converge to zero on a "reachable" part of the target in appropriate directions. We present a counter-example which shows that the uniqueness does not hold w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2000, Vol.38 (2), p.470-481
Hauptverfasser: Alvarez, Olivier, Koike, Shigeaki, Nakayama, Isao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 2
container_start_page 470
container_title SIAM journal on control and optimization
container_volume 38
creator Alvarez, Olivier
Koike, Shigeaki
Nakayama, Isao
description We obtain the uniqueness of lower semicontinuous (LSC) viscosity solutions of the transformed minimum time problem assuming that they converge to zero on a "reachable" part of the target in appropriate directions. We present a counter-example which shows that the uniqueness does not hold without this convergence assumption. It was shown by Soravia that the uniqueness of LSC viscosity solutions having a "subsolution property" on the target holds. In order to verify this subsolution property, we show that the dynamic programming principle (DPP) holds inside for any LSC viscosity solutions. In order to obtain the DPP, we prepare appropriate approximate PDEs derived through Barles' inf-convolution and its variant.
doi_str_mv 10.1137/S0363012997317190
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925817056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600522921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-775149693b962bcbf587bb215d3ba2b2a7e1cdc374852353da7673b4eac223e3</originalsourceid><addsrcrecordid>eNplkE1LxDAYhIMouK7-AG_BezVv3qZpjrL4BRWFVq-lSVPMsk3WpEX237vLevM0h3mYYYaQa2C3ACjvaoYFMuBKSQQJip2QBTAlMglYnpLFwc4O_jm5SGnNGOQ55AtSf3j3PVtvU6JhoFX4sZHWdnQm-Mn5OcyJfrpkQnLTjtZhM08u-ESHEOn0Zemr826cR9q40dL3GPTGjpfkbOg2yV796ZI0jw_N6jmr3p5eVvdVZrhkUyalgFwVCrUquDZ6EKXUmoPoUXdc805aML1BmZeCo8C-k4VEndvOcI4Wl-TmGLuNYT8hTe06zNHvG1vFRQmSiWIPwREyMaQU7dBuoxu7uGuBtYfn2n_P4S8SW2D8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925817056</pqid></control><display><type>article</type><title>Uniqueness of Lower Semicontinuous Viscosity Solutions for the Minimum Time Problem</title><source>SIAM Journals Online</source><source>EBSCOhost Business Source Complete</source><creator>Alvarez, Olivier ; Koike, Shigeaki ; Nakayama, Isao</creator><creatorcontrib>Alvarez, Olivier ; Koike, Shigeaki ; Nakayama, Isao</creatorcontrib><description>We obtain the uniqueness of lower semicontinuous (LSC) viscosity solutions of the transformed minimum time problem assuming that they converge to zero on a "reachable" part of the target in appropriate directions. We present a counter-example which shows that the uniqueness does not hold without this convergence assumption. It was shown by Soravia that the uniqueness of LSC viscosity solutions having a "subsolution property" on the target holds. In order to verify this subsolution property, we show that the dynamic programming principle (DPP) holds inside for any LSC viscosity solutions. In order to obtain the DPP, we prepare appropriate approximate PDEs derived through Barles' inf-convolution and its variant.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/S0363012997317190</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Control theory ; Dynamic programming ; Nonlinear equations ; Viscosity</subject><ispartof>SIAM journal on control and optimization, 2000, Vol.38 (2), p.470-481</ispartof><rights>[Copyright] © 2000 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-775149693b962bcbf587bb215d3ba2b2a7e1cdc374852353da7673b4eac223e3</citedby><cites>FETCH-LOGICAL-c270t-775149693b962bcbf587bb215d3ba2b2a7e1cdc374852353da7673b4eac223e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Alvarez, Olivier</creatorcontrib><creatorcontrib>Koike, Shigeaki</creatorcontrib><creatorcontrib>Nakayama, Isao</creatorcontrib><title>Uniqueness of Lower Semicontinuous Viscosity Solutions for the Minimum Time Problem</title><title>SIAM journal on control and optimization</title><description>We obtain the uniqueness of lower semicontinuous (LSC) viscosity solutions of the transformed minimum time problem assuming that they converge to zero on a "reachable" part of the target in appropriate directions. We present a counter-example which shows that the uniqueness does not hold without this convergence assumption. It was shown by Soravia that the uniqueness of LSC viscosity solutions having a "subsolution property" on the target holds. In order to verify this subsolution property, we show that the dynamic programming principle (DPP) holds inside for any LSC viscosity solutions. In order to obtain the DPP, we prepare appropriate approximate PDEs derived through Barles' inf-convolution and its variant.</description><subject>Control theory</subject><subject>Dynamic programming</subject><subject>Nonlinear equations</subject><subject>Viscosity</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1LxDAYhIMouK7-AG_BezVv3qZpjrL4BRWFVq-lSVPMsk3WpEX237vLevM0h3mYYYaQa2C3ACjvaoYFMuBKSQQJip2QBTAlMglYnpLFwc4O_jm5SGnNGOQ55AtSf3j3PVtvU6JhoFX4sZHWdnQm-Mn5OcyJfrpkQnLTjtZhM08u-ESHEOn0Zemr826cR9q40dL3GPTGjpfkbOg2yV796ZI0jw_N6jmr3p5eVvdVZrhkUyalgFwVCrUquDZ6EKXUmoPoUXdc805aML1BmZeCo8C-k4VEndvOcI4Wl-TmGLuNYT8hTe06zNHvG1vFRQmSiWIPwREyMaQU7dBuoxu7uGuBtYfn2n_P4S8SW2D8</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Alvarez, Olivier</creator><creator>Koike, Shigeaki</creator><creator>Nakayama, Isao</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2000</creationdate><title>Uniqueness of Lower Semicontinuous Viscosity Solutions for the Minimum Time Problem</title><author>Alvarez, Olivier ; Koike, Shigeaki ; Nakayama, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-775149693b962bcbf587bb215d3ba2b2a7e1cdc374852353da7673b4eac223e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Control theory</topic><topic>Dynamic programming</topic><topic>Nonlinear equations</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez, Olivier</creatorcontrib><creatorcontrib>Koike, Shigeaki</creatorcontrib><creatorcontrib>Nakayama, Isao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez, Olivier</au><au>Koike, Shigeaki</au><au>Nakayama, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniqueness of Lower Semicontinuous Viscosity Solutions for the Minimum Time Problem</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2000</date><risdate>2000</risdate><volume>38</volume><issue>2</issue><spage>470</spage><epage>481</epage><pages>470-481</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>We obtain the uniqueness of lower semicontinuous (LSC) viscosity solutions of the transformed minimum time problem assuming that they converge to zero on a "reachable" part of the target in appropriate directions. We present a counter-example which shows that the uniqueness does not hold without this convergence assumption. It was shown by Soravia that the uniqueness of LSC viscosity solutions having a "subsolution property" on the target holds. In order to verify this subsolution property, we show that the dynamic programming principle (DPP) holds inside for any LSC viscosity solutions. In order to obtain the DPP, we prepare appropriate approximate PDEs derived through Barles' inf-convolution and its variant.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0363012997317190</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2000, Vol.38 (2), p.470-481
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_925817056
source SIAM Journals Online; EBSCOhost Business Source Complete
subjects Control theory
Dynamic programming
Nonlinear equations
Viscosity
title Uniqueness of Lower Semicontinuous Viscosity Solutions for the Minimum Time Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniqueness%20of%20Lower%20Semicontinuous%20Viscosity%20Solutions%20for%20the%20Minimum%20Time%20Problem&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Alvarez,%20Olivier&rft.date=2000&rft.volume=38&rft.issue=2&rft.spage=470&rft.epage=481&rft.pages=470-481&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/S0363012997317190&rft_dat=%3Cproquest_cross%3E2600522921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925817056&rft_id=info:pmid/&rfr_iscdi=true