An application of stochastic control theory to financial economics
We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maxi...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2004-01, Vol.43 (2), p.502-531 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 531 |
---|---|
container_issue | 2 |
container_start_page | 502 |
container_title | SIAM journal on control and optimization |
container_volume | 43 |
creator | FLEMING, Wendell H PANG, Tao |
description | We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maximize the infinite horizon expected discounted hyperbolic absolute risk aversion (HARA) utility of consumption. A dynamic programming principle is used to derive the dynamic programming equation (DPE). The subsolution--supersolution method is used to obtain existence of solutions of the DPE. The solutions are then used to derive the optimal investment and consumption policies. |
doi_str_mv | 10.1137/s0363012902419060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925798911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600397121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-6bbb2dfdb14647c48ffd87480a206f81a6de5556fffc939bd83ae1c8190b36633</originalsourceid><addsrcrecordid>eNpdkE9LxDAUxIMouFY_gLcgeKzmNWmaHNfFf7DgQT2HNE3YLN2mJtnDfntbdkHw9A7zZob5IXQL5AGANo-JUE4JVJJUDCTh5AwtgMi6bICKc7SY5XLWL9FVSltCgDFgC_S0HLAex94bnX0YcHA45WA2OmVvsAlDjqHHeWNDPOAcsPODHozXPbaTGHbepGt04XSf7M3pFuj75flr9VauP17fV8t1aRjwXPK2bavOdS0wzhrDhHOdaJgguiLcCdC8s3Vdc-eckVS2naDaghHTmpZyTmmB7o65Yww_e5uy2oZ9HKZKJau6kUJOJAoExycTQ0rROjVGv9PxoIComZT6_E9q8tyfgnUyundxXpj-jLyWFHhFfwGSZWgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925798911</pqid></control><display><type>article</type><title>An application of stochastic control theory to financial economics</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>FLEMING, Wendell H ; PANG, Tao</creator><creatorcontrib>FLEMING, Wendell H ; PANG, Tao</creatorcontrib><description>We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maximize the infinite horizon expected discounted hyperbolic absolute risk aversion (HARA) utility of consumption. A dynamic programming principle is used to derive the dynamic programming equation (DPE). The subsolution--supersolution method is used to obtain existence of solutions of the DPE. The solutions are then used to derive the optimal investment and consumption policies.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/s0363012902419060</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Applied sciences ; Brownian motion ; Computer science; control theory; systems ; Control theory. Systems ; Dynamic programming ; Exact sciences and technology ; Interest rates ; Investments ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Portfolio theory ; Stochastic control theory ; Utility functions</subject><ispartof>SIAM journal on control and optimization, 2004-01, Vol.43 (2), p.502-531</ispartof><rights>2005 INIST-CNRS</rights><rights>[Copyright] © 2004 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-6bbb2dfdb14647c48ffd87480a206f81a6de5556fffc939bd83ae1c8190b36633</citedby><cites>FETCH-LOGICAL-c416t-6bbb2dfdb14647c48ffd87480a206f81a6de5556fffc939bd83ae1c8190b36633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16593162$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FLEMING, Wendell H</creatorcontrib><creatorcontrib>PANG, Tao</creatorcontrib><title>An application of stochastic control theory to financial economics</title><title>SIAM journal on control and optimization</title><description>We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maximize the infinite horizon expected discounted hyperbolic absolute risk aversion (HARA) utility of consumption. A dynamic programming principle is used to derive the dynamic programming equation (DPE). The subsolution--supersolution method is used to obtain existence of solutions of the DPE. The solutions are then used to derive the optimal investment and consumption policies.</description><subject>Applied mathematics</subject><subject>Applied sciences</subject><subject>Brownian motion</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Dynamic programming</subject><subject>Exact sciences and technology</subject><subject>Interest rates</subject><subject>Investments</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Portfolio theory</subject><subject>Stochastic control theory</subject><subject>Utility functions</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9LxDAUxIMouFY_gLcgeKzmNWmaHNfFf7DgQT2HNE3YLN2mJtnDfntbdkHw9A7zZob5IXQL5AGANo-JUE4JVJJUDCTh5AwtgMi6bICKc7SY5XLWL9FVSltCgDFgC_S0HLAex94bnX0YcHA45WA2OmVvsAlDjqHHeWNDPOAcsPODHozXPbaTGHbepGt04XSf7M3pFuj75flr9VauP17fV8t1aRjwXPK2bavOdS0wzhrDhHOdaJgguiLcCdC8s3Vdc-eckVS2naDaghHTmpZyTmmB7o65Yww_e5uy2oZ9HKZKJau6kUJOJAoExycTQ0rROjVGv9PxoIComZT6_E9q8tyfgnUyundxXpj-jLyWFHhFfwGSZWgo</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>FLEMING, Wendell H</creator><creator>PANG, Tao</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20040101</creationdate><title>An application of stochastic control theory to financial economics</title><author>FLEMING, Wendell H ; PANG, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-6bbb2dfdb14647c48ffd87480a206f81a6de5556fffc939bd83ae1c8190b36633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied mathematics</topic><topic>Applied sciences</topic><topic>Brownian motion</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Dynamic programming</topic><topic>Exact sciences and technology</topic><topic>Interest rates</topic><topic>Investments</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Portfolio theory</topic><topic>Stochastic control theory</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FLEMING, Wendell H</creatorcontrib><creatorcontrib>PANG, Tao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FLEMING, Wendell H</au><au>PANG, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of stochastic control theory to financial economics</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>43</volume><issue>2</issue><spage>502</spage><epage>531</epage><pages>502-531</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maximize the infinite horizon expected discounted hyperbolic absolute risk aversion (HARA) utility of consumption. A dynamic programming principle is used to derive the dynamic programming equation (DPE). The subsolution--supersolution method is used to obtain existence of solutions of the DPE. The solutions are then used to derive the optimal investment and consumption policies.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0363012902419060</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 2004-01, Vol.43 (2), p.502-531 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_journals_925798911 |
source | SIAM Journals Online; Business Source Complete |
subjects | Applied mathematics Applied sciences Brownian motion Computer science control theory systems Control theory. Systems Dynamic programming Exact sciences and technology Interest rates Investments Mathematical programming Operational research and scientific management Operational research. Management science Optimization Portfolio theory Stochastic control theory Utility functions |
title | An application of stochastic control theory to financial economics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20stochastic%20control%20theory%20to%20financial%20economics&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=FLEMING,%20Wendell%20H&rft.date=2004-01-01&rft.volume=43&rft.issue=2&rft.spage=502&rft.epage=531&rft.pages=502-531&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/s0363012902419060&rft_dat=%3Cproquest_cross%3E2600397121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925798911&rft_id=info:pmid/&rfr_iscdi=true |