An application of stochastic control theory to financial economics

We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2004-01, Vol.43 (2), p.502-531
Hauptverfasser: FLEMING, Wendell H, PANG, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 531
container_issue 2
container_start_page 502
container_title SIAM journal on control and optimization
container_volume 43
creator FLEMING, Wendell H
PANG, Tao
description We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maximize the infinite horizon expected discounted hyperbolic absolute risk aversion (HARA) utility of consumption. A dynamic programming principle is used to derive the dynamic programming equation (DPE). The subsolution--supersolution method is used to obtain existence of solutions of the DPE. The solutions are then used to derive the optimal investment and consumption policies.
doi_str_mv 10.1137/s0363012902419060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925798911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600397121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-6bbb2dfdb14647c48ffd87480a206f81a6de5556fffc939bd83ae1c8190b36633</originalsourceid><addsrcrecordid>eNpdkE9LxDAUxIMouFY_gLcgeKzmNWmaHNfFf7DgQT2HNE3YLN2mJtnDfntbdkHw9A7zZob5IXQL5AGANo-JUE4JVJJUDCTh5AwtgMi6bICKc7SY5XLWL9FVSltCgDFgC_S0HLAex94bnX0YcHA45WA2OmVvsAlDjqHHeWNDPOAcsPODHozXPbaTGHbepGt04XSf7M3pFuj75flr9VauP17fV8t1aRjwXPK2bavOdS0wzhrDhHOdaJgguiLcCdC8s3Vdc-eckVS2naDaghHTmpZyTmmB7o65Yww_e5uy2oZ9HKZKJau6kUJOJAoExycTQ0rROjVGv9PxoIComZT6_E9q8tyfgnUyundxXpj-jLyWFHhFfwGSZWgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925798911</pqid></control><display><type>article</type><title>An application of stochastic control theory to financial economics</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>FLEMING, Wendell H ; PANG, Tao</creator><creatorcontrib>FLEMING, Wendell H ; PANG, Tao</creatorcontrib><description>We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maximize the infinite horizon expected discounted hyperbolic absolute risk aversion (HARA) utility of consumption. A dynamic programming principle is used to derive the dynamic programming equation (DPE). The subsolution--supersolution method is used to obtain existence of solutions of the DPE. The solutions are then used to derive the optimal investment and consumption policies.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/s0363012902419060</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Applied sciences ; Brownian motion ; Computer science; control theory; systems ; Control theory. Systems ; Dynamic programming ; Exact sciences and technology ; Interest rates ; Investments ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Portfolio theory ; Stochastic control theory ; Utility functions</subject><ispartof>SIAM journal on control and optimization, 2004-01, Vol.43 (2), p.502-531</ispartof><rights>2005 INIST-CNRS</rights><rights>[Copyright] © 2004 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-6bbb2dfdb14647c48ffd87480a206f81a6de5556fffc939bd83ae1c8190b36633</citedby><cites>FETCH-LOGICAL-c416t-6bbb2dfdb14647c48ffd87480a206f81a6de5556fffc939bd83ae1c8190b36633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16593162$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FLEMING, Wendell H</creatorcontrib><creatorcontrib>PANG, Tao</creatorcontrib><title>An application of stochastic control theory to financial economics</title><title>SIAM journal on control and optimization</title><description>We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maximize the infinite horizon expected discounted hyperbolic absolute risk aversion (HARA) utility of consumption. A dynamic programming principle is used to derive the dynamic programming equation (DPE). The subsolution--supersolution method is used to obtain existence of solutions of the DPE. The solutions are then used to derive the optimal investment and consumption policies.</description><subject>Applied mathematics</subject><subject>Applied sciences</subject><subject>Brownian motion</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Dynamic programming</subject><subject>Exact sciences and technology</subject><subject>Interest rates</subject><subject>Investments</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Portfolio theory</subject><subject>Stochastic control theory</subject><subject>Utility functions</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9LxDAUxIMouFY_gLcgeKzmNWmaHNfFf7DgQT2HNE3YLN2mJtnDfntbdkHw9A7zZob5IXQL5AGANo-JUE4JVJJUDCTh5AwtgMi6bICKc7SY5XLWL9FVSltCgDFgC_S0HLAex94bnX0YcHA45WA2OmVvsAlDjqHHeWNDPOAcsPODHozXPbaTGHbepGt04XSf7M3pFuj75flr9VauP17fV8t1aRjwXPK2bavOdS0wzhrDhHOdaJgguiLcCdC8s3Vdc-eckVS2naDaghHTmpZyTmmB7o65Yww_e5uy2oZ9HKZKJau6kUJOJAoExycTQ0rROjVGv9PxoIComZT6_E9q8tyfgnUyundxXpj-jLyWFHhFfwGSZWgo</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>FLEMING, Wendell H</creator><creator>PANG, Tao</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20040101</creationdate><title>An application of stochastic control theory to financial economics</title><author>FLEMING, Wendell H ; PANG, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-6bbb2dfdb14647c48ffd87480a206f81a6de5556fffc939bd83ae1c8190b36633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied mathematics</topic><topic>Applied sciences</topic><topic>Brownian motion</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Dynamic programming</topic><topic>Exact sciences and technology</topic><topic>Interest rates</topic><topic>Investments</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Portfolio theory</topic><topic>Stochastic control theory</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FLEMING, Wendell H</creatorcontrib><creatorcontrib>PANG, Tao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FLEMING, Wendell H</au><au>PANG, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of stochastic control theory to financial economics</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>43</volume><issue>2</issue><spage>502</spage><epage>531</epage><pages>502-531</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>We consider a portfolio optimization problem which is formulated as a stochastic control problem. Risky asset prices obey a logarithmic Brownian motion, and interest rates vary according to an ergodic Markov diffusion process. The goal is to choose optimal investment and consumption policies to maximize the infinite horizon expected discounted hyperbolic absolute risk aversion (HARA) utility of consumption. A dynamic programming principle is used to derive the dynamic programming equation (DPE). The subsolution--supersolution method is used to obtain existence of solutions of the DPE. The solutions are then used to derive the optimal investment and consumption policies.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0363012902419060</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2004-01, Vol.43 (2), p.502-531
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_925798911
source SIAM Journals Online; Business Source Complete
subjects Applied mathematics
Applied sciences
Brownian motion
Computer science
control theory
systems
Control theory. Systems
Dynamic programming
Exact sciences and technology
Interest rates
Investments
Mathematical programming
Operational research and scientific management
Operational research. Management science
Optimization
Portfolio theory
Stochastic control theory
Utility functions
title An application of stochastic control theory to financial economics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20stochastic%20control%20theory%20to%20financial%20economics&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=FLEMING,%20Wendell%20H&rft.date=2004-01-01&rft.volume=43&rft.issue=2&rft.spage=502&rft.epage=531&rft.pages=502-531&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/s0363012902419060&rft_dat=%3Cproquest_cross%3E2600397121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925798911&rft_id=info:pmid/&rfr_iscdi=true