Stationary filter for continuous-time markovian jump linear systems
We derive a stationary filter for the best linear mean square filter (BLMSF) of continuous-time Markovian jump linear systems (MJLS). It amounts here to obtain the convergence of the error covariance matrix of the BLMSF to a stationary value under the assumption of mean square stability of the MJLS...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2005-01, Vol.44 (3), p.801-815 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 815 |
---|---|
container_issue | 3 |
container_start_page | 801 |
container_title | SIAM journal on control and optimization |
container_volume | 44 |
creator | FRAGOSO, Marcelo D ROCHA, Nei C. S |
description | We derive a stationary filter for the best linear mean square filter (BLMSF) of continuous-time Markovian jump linear systems (MJLS). It amounts here to obtain the convergence of the error covariance matrix of the BLMSF to a stationary value under the assumption of mean square stability of the MJLS and ergodicity of the associated Markov chain $\theta _{t}$. It is shown that there exists a unique solution for the stationary Riccati filter equation, and this solution is the limit of the error covariance matrix of the BLMSF. The advantage of this scheme is that it is easy to implement since the filter gain can be performed offline, leading to a linear time-invariant filter. |
doi_str_mv | 10.1137/S0363012903436259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925793270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600279301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-5d6165b276042db0dcf3bf696e90d80200baa97c514e889eadef5fedf4bb1db43</originalsourceid><addsrcrecordid>eNplUE1LwzAYDqLgnP4Ab0HwWH3fJE2aowy_YOBhei5pm0Bm28wkFfbv7XDgwdNzeD55CLlGuEPk6n4DXHJApoELLlmpT8gCQZeFQl6dksWBLg78OblIaQuAQqBYkNUmm-zDaOKeOt9nG6kLkbZhzH6cwpSK7AdLBxM_w7c3I91Ow472frQm0rRP2Q7pkpw50yd7dcQl-Xh6fF-9FOu359fVw7poObBclJ1EWTZMSRCsa6BrHW-c1NJq6CpgAI0xWrUlCltV2prOutLZzommwa4RfElufnN3MXxNNuV6G6Y4zpW1ZqXSnCmYRfgramNIKVpX76Kf5-9rhPpwVf3vqtlzeww2qTW9i2ZsffozKoUVIPAfruxpeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925793270</pqid></control><display><type>article</type><title>Stationary filter for continuous-time markovian jump linear systems</title><source>SIAM Journals Online</source><source>EBSCOhost Business Source Complete</source><creator>FRAGOSO, Marcelo D ; ROCHA, Nei C. S</creator><creatorcontrib>FRAGOSO, Marcelo D ; ROCHA, Nei C. S</creatorcontrib><description>We derive a stationary filter for the best linear mean square filter (BLMSF) of continuous-time Markovian jump linear systems (MJLS). It amounts here to obtain the convergence of the error covariance matrix of the BLMSF to a stationary value under the assumption of mean square stability of the MJLS and ergodicity of the associated Markov chain $\theta _{t}$. It is shown that there exists a unique solution for the stationary Riccati filter equation, and this solution is the limit of the error covariance matrix of the BLMSF. The advantage of this scheme is that it is easy to implement since the filter gain can be performed offline, leading to a linear time-invariant filter.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/S0363012903436259</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Euclidean space ; Exact sciences and technology ; Hilbert space ; Markov analysis ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; System theory</subject><ispartof>SIAM journal on control and optimization, 2005-01, Vol.44 (3), p.801-815</ispartof><rights>2006 INIST-CNRS</rights><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-5d6165b276042db0dcf3bf696e90d80200baa97c514e889eadef5fedf4bb1db43</citedby><cites>FETCH-LOGICAL-c302t-5d6165b276042db0dcf3bf696e90d80200baa97c514e889eadef5fedf4bb1db43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17718010$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FRAGOSO, Marcelo D</creatorcontrib><creatorcontrib>ROCHA, Nei C. S</creatorcontrib><title>Stationary filter for continuous-time markovian jump linear systems</title><title>SIAM journal on control and optimization</title><description>We derive a stationary filter for the best linear mean square filter (BLMSF) of continuous-time Markovian jump linear systems (MJLS). It amounts here to obtain the convergence of the error covariance matrix of the BLMSF to a stationary value under the assumption of mean square stability of the MJLS and ergodicity of the associated Markov chain $\theta _{t}$. It is shown that there exists a unique solution for the stationary Riccati filter equation, and this solution is the limit of the error covariance matrix of the BLMSF. The advantage of this scheme is that it is easy to implement since the filter gain can be performed offline, leading to a linear time-invariant filter.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>Hilbert space</subject><subject>Markov analysis</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>System theory</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUE1LwzAYDqLgnP4Ab0HwWH3fJE2aowy_YOBhei5pm0Bm28wkFfbv7XDgwdNzeD55CLlGuEPk6n4DXHJApoELLlmpT8gCQZeFQl6dksWBLg78OblIaQuAQqBYkNUmm-zDaOKeOt9nG6kLkbZhzH6cwpSK7AdLBxM_w7c3I91Ow472frQm0rRP2Q7pkpw50yd7dcQl-Xh6fF-9FOu359fVw7poObBclJ1EWTZMSRCsa6BrHW-c1NJq6CpgAI0xWrUlCltV2prOutLZzommwa4RfElufnN3MXxNNuV6G6Y4zpW1ZqXSnCmYRfgramNIKVpX76Kf5-9rhPpwVf3vqtlzeww2qTW9i2ZsffozKoUVIPAfruxpeA</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>FRAGOSO, Marcelo D</creator><creator>ROCHA, Nei C. S</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20050101</creationdate><title>Stationary filter for continuous-time markovian jump linear systems</title><author>FRAGOSO, Marcelo D ; ROCHA, Nei C. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-5d6165b276042db0dcf3bf696e90d80200baa97c514e889eadef5fedf4bb1db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>Hilbert space</topic><topic>Markov analysis</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FRAGOSO, Marcelo D</creatorcontrib><creatorcontrib>ROCHA, Nei C. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FRAGOSO, Marcelo D</au><au>ROCHA, Nei C. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stationary filter for continuous-time markovian jump linear systems</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>44</volume><issue>3</issue><spage>801</spage><epage>815</epage><pages>801-815</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>We derive a stationary filter for the best linear mean square filter (BLMSF) of continuous-time Markovian jump linear systems (MJLS). It amounts here to obtain the convergence of the error covariance matrix of the BLMSF to a stationary value under the assumption of mean square stability of the MJLS and ergodicity of the associated Markov chain $\theta _{t}$. It is shown that there exists a unique solution for the stationary Riccati filter equation, and this solution is the limit of the error covariance matrix of the BLMSF. The advantage of this scheme is that it is easy to implement since the filter gain can be performed offline, leading to a linear time-invariant filter.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0363012903436259</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 2005-01, Vol.44 (3), p.801-815 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_journals_925793270 |
source | SIAM Journals Online; EBSCOhost Business Source Complete |
subjects | Applied sciences Computer science control theory systems Control theory. Systems Euclidean space Exact sciences and technology Hilbert space Markov analysis Mathematical programming Operational research and scientific management Operational research. Management science System theory |
title | Stationary filter for continuous-time markovian jump linear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stationary%20filter%20for%20continuous-time%20markovian%20jump%20linear%20systems&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=FRAGOSO,%20Marcelo%20D&rft.date=2005-01-01&rft.volume=44&rft.issue=3&rft.spage=801&rft.epage=815&rft.pages=801-815&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/S0363012903436259&rft_dat=%3Cproquest_cross%3E2600279301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925793270&rft_id=info:pmid/&rfr_iscdi=true |