SNP Array Analysis in Constitutional and Cancer Genome Diagnostics – Copy Number Variants, Genotyping and Quality Control

Array-based comparative genomic hybridization analysis of genomic DNA was first applied in postnatal diagnosis for patients with intellectual disability (ID) and/or congenital anomalies (CA). Genome-wide single-nucleotide polymorphism (SNP) array analysis was subsequently implemented as the first li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytogenetic and genome research 2011-12, Vol.135 (3-4), p.212-221
Hauptverfasser: de Leeuw, N., Hehir-Kwa, J.Y., Simons, A., Geurts van Kessel, A., Smeets, D.F., Faas, B.H.W., Pfundt, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 3-4
container_start_page 212
container_title Cytogenetic and genome research
container_volume 135
creator de Leeuw, N.
Hehir-Kwa, J.Y.
Simons, A.
Geurts van Kessel, A.
Smeets, D.F.
Faas, B.H.W.
Pfundt, R.
description Array-based comparative genomic hybridization analysis of genomic DNA was first applied in postnatal diagnosis for patients with intellectual disability (ID) and/or congenital anomalies (CA). Genome-wide single-nucleotide polymorphism (SNP) array analysis was subsequently implemented as the first line diagnostic test for ID/CA patients in our laboratory in 2009, because its diagnostic yield is significantly higher than that of routine cytogenetic analysis. In addition to the detection of copy number variations, the genotype information obtained with SNP array analysis enables the detection of stretches of homozygosity and thereby the possible identification of recessive disease genes, mosaic aneuploidy, or uniparental disomy. Patient-parent (trio) information analysis is used to screen for the presence of any form of uniparental disomy in the patient and can determine the parental origin of a de novo copy number variation. Moreover, the outcome of a genotype analysis is used as a final quality control by ruling out potential sample mismatches due to non-paternity or sample mix-up. SNP array analysis is now also used in our laboratory for patients with disorders for which locus heterogeneity is known (homozygosity pre-screening), in prenatal diagnosis in case of structural ultrasound anomalies, and for patients with leukemia. In this report, we summarize our array findings and experiences in the various diagnostic applications and demonstrate the power of a SNP-based array platform for molecular karyotyping, because it not only significantly improves the diagnostic yield in both constitutional and cancer genome diagnostics, but it also enhances the quality of the diagnostic laboratory workflow.
doi_str_mv 10.1159/000331273
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925763332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600122351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2d06a0c009909a2a4810f098acccd94b95a2537f339df9c02682c9d23144d37d3</originalsourceid><addsrcrecordid>eNqN0btuFDEUBmBzE0mWFPQostIgJBZ8nfEpV0sISFEAcRHdyOvxrBxm7MX2FCMa3oE35EnwZpctqKgs-XznL86P0GNKXlAq4SUhhHPKan4HnUKtuCJSAggi76JjKpiYKwlf76GT_YADuX8YKHqETlK6IYQqIauH6IhR4IKp6hj9-Hj9Hi9i1BNeeN1PySXsPF4Gn7LLY3ah_GLtW7zU3tiIL60Pg8WvnF77UIxJ-PfPX2VhM-HrcVgV8kVHp31Oz29xnjbOr28jPoy6d3napucY-kfoQaf7ZE_37wx9fn3xaflmfvXu8u1ycTU3vBJ5zlpSaWIIASCgmRaKko6A0saYFsQKpGaS1x3n0HZgCKsUM9AyToVoed3yGXq6y93E8H20KTeDS8b2vfY2jKkBKgXwctP_kBQYbGuYofN_5E0YY7lVQUzWFeecFfRsh0wMKUXbNZvoBh2nhpJmW2tzqLXYs33guBpse5B_qyrgyQ5803Ft4wHs9_8AdPygtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925763332</pqid></control><display><type>article</type><title>SNP Array Analysis in Constitutional and Cancer Genome Diagnostics – Copy Number Variants, Genotyping and Quality Control</title><source>MEDLINE</source><source>Karger Journals</source><source>Alma/SFX Local Collection</source><creator>de Leeuw, N. ; Hehir-Kwa, J.Y. ; Simons, A. ; Geurts van Kessel, A. ; Smeets, D.F. ; Faas, B.H.W. ; Pfundt, R.</creator><creatorcontrib>de Leeuw, N. ; Hehir-Kwa, J.Y. ; Simons, A. ; Geurts van Kessel, A. ; Smeets, D.F. ; Faas, B.H.W. ; Pfundt, R.</creatorcontrib><description>Array-based comparative genomic hybridization analysis of genomic DNA was first applied in postnatal diagnosis for patients with intellectual disability (ID) and/or congenital anomalies (CA). Genome-wide single-nucleotide polymorphism (SNP) array analysis was subsequently implemented as the first line diagnostic test for ID/CA patients in our laboratory in 2009, because its diagnostic yield is significantly higher than that of routine cytogenetic analysis. In addition to the detection of copy number variations, the genotype information obtained with SNP array analysis enables the detection of stretches of homozygosity and thereby the possible identification of recessive disease genes, mosaic aneuploidy, or uniparental disomy. Patient-parent (trio) information analysis is used to screen for the presence of any form of uniparental disomy in the patient and can determine the parental origin of a de novo copy number variation. Moreover, the outcome of a genotype analysis is used as a final quality control by ruling out potential sample mismatches due to non-paternity or sample mix-up. SNP array analysis is now also used in our laboratory for patients with disorders for which locus heterogeneity is known (homozygosity pre-screening), in prenatal diagnosis in case of structural ultrasound anomalies, and for patients with leukemia. In this report, we summarize our array findings and experiences in the various diagnostic applications and demonstrate the power of a SNP-based array platform for molecular karyotyping, because it not only significantly improves the diagnostic yield in both constitutional and cancer genome diagnostics, but it also enhances the quality of the diagnostic laboratory workflow.</description><identifier>ISSN: 1424-8581</identifier><identifier>ISBN: 3805599390</identifier><identifier>ISBN: 9783805599399</identifier><identifier>EISSN: 1424-859X</identifier><identifier>EISBN: 9783805599405</identifier><identifier>EISBN: 3805599404</identifier><identifier>DOI: 10.1159/000331273</identifier><identifier>PMID: 21934286</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Comparative Genomic Hybridization - methods ; Comparative Genomic Hybridization - standards ; Congenital Abnormalities - diagnosis ; Congenital Abnormalities - genetics ; Data Interpretation, Statistical ; DNA Copy Number Variations ; Female ; Genotype ; Homozygote ; Humans ; Intellectual Disability - diagnosis ; Intellectual Disability - genetics ; Male ; Oligonucleotide Array Sequence Analysis - methods ; Oligonucleotide Array Sequence Analysis - standards ; Polymorphism, Single Nucleotide ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - diagnosis ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics ; Pregnancy ; Prenatal Diagnosis - methods ; Reference Values</subject><ispartof>Cytogenetic and genome research, 2011-12, Vol.135 (3-4), p.212-221</ispartof><rights>2011 S. Karger AG, Basel</rights><rights>Copyright © 2011 S. Karger AG, Basel.</rights><rights>Copyright (c) 2011 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2d06a0c009909a2a4810f098acccd94b95a2537f339df9c02682c9d23144d37d3</citedby><cites>FETCH-LOGICAL-c364t-2d06a0c009909a2a4810f098acccd94b95a2537f339df9c02682c9d23144d37d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2429,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21934286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Leeuw, N.</creatorcontrib><creatorcontrib>Hehir-Kwa, J.Y.</creatorcontrib><creatorcontrib>Simons, A.</creatorcontrib><creatorcontrib>Geurts van Kessel, A.</creatorcontrib><creatorcontrib>Smeets, D.F.</creatorcontrib><creatorcontrib>Faas, B.H.W.</creatorcontrib><creatorcontrib>Pfundt, R.</creatorcontrib><title>SNP Array Analysis in Constitutional and Cancer Genome Diagnostics – Copy Number Variants, Genotyping and Quality Control</title><title>Cytogenetic and genome research</title><addtitle>Cytogenet Genome Res</addtitle><description>Array-based comparative genomic hybridization analysis of genomic DNA was first applied in postnatal diagnosis for patients with intellectual disability (ID) and/or congenital anomalies (CA). Genome-wide single-nucleotide polymorphism (SNP) array analysis was subsequently implemented as the first line diagnostic test for ID/CA patients in our laboratory in 2009, because its diagnostic yield is significantly higher than that of routine cytogenetic analysis. In addition to the detection of copy number variations, the genotype information obtained with SNP array analysis enables the detection of stretches of homozygosity and thereby the possible identification of recessive disease genes, mosaic aneuploidy, or uniparental disomy. Patient-parent (trio) information analysis is used to screen for the presence of any form of uniparental disomy in the patient and can determine the parental origin of a de novo copy number variation. Moreover, the outcome of a genotype analysis is used as a final quality control by ruling out potential sample mismatches due to non-paternity or sample mix-up. SNP array analysis is now also used in our laboratory for patients with disorders for which locus heterogeneity is known (homozygosity pre-screening), in prenatal diagnosis in case of structural ultrasound anomalies, and for patients with leukemia. In this report, we summarize our array findings and experiences in the various diagnostic applications and demonstrate the power of a SNP-based array platform for molecular karyotyping, because it not only significantly improves the diagnostic yield in both constitutional and cancer genome diagnostics, but it also enhances the quality of the diagnostic laboratory workflow.</description><subject>Comparative Genomic Hybridization - methods</subject><subject>Comparative Genomic Hybridization - standards</subject><subject>Congenital Abnormalities - diagnosis</subject><subject>Congenital Abnormalities - genetics</subject><subject>Data Interpretation, Statistical</subject><subject>DNA Copy Number Variations</subject><subject>Female</subject><subject>Genotype</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Intellectual Disability - diagnosis</subject><subject>Intellectual Disability - genetics</subject><subject>Male</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oligonucleotide Array Sequence Analysis - standards</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - diagnosis</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</subject><subject>Pregnancy</subject><subject>Prenatal Diagnosis - methods</subject><subject>Reference Values</subject><issn>1424-8581</issn><issn>1424-859X</issn><isbn>3805599390</isbn><isbn>9783805599399</isbn><isbn>9783805599405</isbn><isbn>3805599404</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0btuFDEUBmBzE0mWFPQostIgJBZ8nfEpV0sISFEAcRHdyOvxrBxm7MX2FCMa3oE35EnwZpctqKgs-XznL86P0GNKXlAq4SUhhHPKan4HnUKtuCJSAggi76JjKpiYKwlf76GT_YADuX8YKHqETlK6IYQqIauH6IhR4IKp6hj9-Hj9Hi9i1BNeeN1PySXsPF4Gn7LLY3ah_GLtW7zU3tiIL60Pg8WvnF77UIxJ-PfPX2VhM-HrcVgV8kVHp31Oz29xnjbOr28jPoy6d3napucY-kfoQaf7ZE_37wx9fn3xaflmfvXu8u1ycTU3vBJ5zlpSaWIIASCgmRaKko6A0saYFsQKpGaS1x3n0HZgCKsUM9AyToVoed3yGXq6y93E8H20KTeDS8b2vfY2jKkBKgXwctP_kBQYbGuYofN_5E0YY7lVQUzWFeecFfRsh0wMKUXbNZvoBh2nhpJmW2tzqLXYs33guBpse5B_qyrgyQ5803Ft4wHs9_8AdPygtA</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>de Leeuw, N.</creator><creator>Hehir-Kwa, J.Y.</creator><creator>Simons, A.</creator><creator>Geurts van Kessel, A.</creator><creator>Smeets, D.F.</creator><creator>Faas, B.H.W.</creator><creator>Pfundt, R.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>201112</creationdate><title>SNP Array Analysis in Constitutional and Cancer Genome Diagnostics – Copy Number Variants, Genotyping and Quality Control</title><author>de Leeuw, N. ; Hehir-Kwa, J.Y. ; Simons, A. ; Geurts van Kessel, A. ; Smeets, D.F. ; Faas, B.H.W. ; Pfundt, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2d06a0c009909a2a4810f098acccd94b95a2537f339df9c02682c9d23144d37d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Comparative Genomic Hybridization - methods</topic><topic>Comparative Genomic Hybridization - standards</topic><topic>Congenital Abnormalities - diagnosis</topic><topic>Congenital Abnormalities - genetics</topic><topic>Data Interpretation, Statistical</topic><topic>DNA Copy Number Variations</topic><topic>Female</topic><topic>Genotype</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Intellectual Disability - diagnosis</topic><topic>Intellectual Disability - genetics</topic><topic>Male</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oligonucleotide Array Sequence Analysis - standards</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - diagnosis</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</topic><topic>Pregnancy</topic><topic>Prenatal Diagnosis - methods</topic><topic>Reference Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Leeuw, N.</creatorcontrib><creatorcontrib>Hehir-Kwa, J.Y.</creatorcontrib><creatorcontrib>Simons, A.</creatorcontrib><creatorcontrib>Geurts van Kessel, A.</creatorcontrib><creatorcontrib>Smeets, D.F.</creatorcontrib><creatorcontrib>Faas, B.H.W.</creatorcontrib><creatorcontrib>Pfundt, R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Cytogenetic and genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Leeuw, N.</au><au>Hehir-Kwa, J.Y.</au><au>Simons, A.</au><au>Geurts van Kessel, A.</au><au>Smeets, D.F.</au><au>Faas, B.H.W.</au><au>Pfundt, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SNP Array Analysis in Constitutional and Cancer Genome Diagnostics – Copy Number Variants, Genotyping and Quality Control</atitle><jtitle>Cytogenetic and genome research</jtitle><addtitle>Cytogenet Genome Res</addtitle><date>2011-12</date><risdate>2011</risdate><volume>135</volume><issue>3-4</issue><spage>212</spage><epage>221</epage><pages>212-221</pages><issn>1424-8581</issn><eissn>1424-859X</eissn><isbn>3805599390</isbn><isbn>9783805599399</isbn><eisbn>9783805599405</eisbn><eisbn>3805599404</eisbn><abstract>Array-based comparative genomic hybridization analysis of genomic DNA was first applied in postnatal diagnosis for patients with intellectual disability (ID) and/or congenital anomalies (CA). Genome-wide single-nucleotide polymorphism (SNP) array analysis was subsequently implemented as the first line diagnostic test for ID/CA patients in our laboratory in 2009, because its diagnostic yield is significantly higher than that of routine cytogenetic analysis. In addition to the detection of copy number variations, the genotype information obtained with SNP array analysis enables the detection of stretches of homozygosity and thereby the possible identification of recessive disease genes, mosaic aneuploidy, or uniparental disomy. Patient-parent (trio) information analysis is used to screen for the presence of any form of uniparental disomy in the patient and can determine the parental origin of a de novo copy number variation. Moreover, the outcome of a genotype analysis is used as a final quality control by ruling out potential sample mismatches due to non-paternity or sample mix-up. SNP array analysis is now also used in our laboratory for patients with disorders for which locus heterogeneity is known (homozygosity pre-screening), in prenatal diagnosis in case of structural ultrasound anomalies, and for patients with leukemia. In this report, we summarize our array findings and experiences in the various diagnostic applications and demonstrate the power of a SNP-based array platform for molecular karyotyping, because it not only significantly improves the diagnostic yield in both constitutional and cancer genome diagnostics, but it also enhances the quality of the diagnostic laboratory workflow.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>21934286</pmid><doi>10.1159/000331273</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1424-8581
ispartof Cytogenetic and genome research, 2011-12, Vol.135 (3-4), p.212-221
issn 1424-8581
1424-859X
language eng
recordid cdi_proquest_journals_925763332
source MEDLINE; Karger Journals; Alma/SFX Local Collection
subjects Comparative Genomic Hybridization - methods
Comparative Genomic Hybridization - standards
Congenital Abnormalities - diagnosis
Congenital Abnormalities - genetics
Data Interpretation, Statistical
DNA Copy Number Variations
Female
Genotype
Homozygote
Humans
Intellectual Disability - diagnosis
Intellectual Disability - genetics
Male
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Array Sequence Analysis - standards
Polymorphism, Single Nucleotide
Precursor Cell Lymphoblastic Leukemia-Lymphoma - diagnosis
Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics
Pregnancy
Prenatal Diagnosis - methods
Reference Values
title SNP Array Analysis in Constitutional and Cancer Genome Diagnostics – Copy Number Variants, Genotyping and Quality Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SNP%20Array%20Analysis%20in%20Constitutional%20and%20Cancer%20Genome%20Diagnostics%20%E2%80%93%20Copy%20Number%20Variants,%20Genotyping%20and%20Quality%20Control&rft.jtitle=Cytogenetic%20and%20genome%20research&rft.au=de%20Leeuw,%20N.&rft.date=2011-12&rft.volume=135&rft.issue=3-4&rft.spage=212&rft.epage=221&rft.pages=212-221&rft.issn=1424-8581&rft.eissn=1424-859X&rft.isbn=3805599390&rft.isbn_list=9783805599399&rft_id=info:doi/10.1159/000331273&rft_dat=%3Cproquest_cross%3E2600122351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783805599405&rft.eisbn_list=3805599404&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925763332&rft_id=info:pmid/21934286&rfr_iscdi=true