Steiner trees for terminals constrained to curves
We give a polynomial time algorithm for solving the Euclidean Steiner tree problem when the terminals are constrained to lie on a fixed finite set of disjoint finite-length compact simple smooth curves. The problem is known to be NP-hard in general. We also show it to be NP-hard if the terminals lie...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 1997-02, Vol.10 (1), p.1-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | SIAM journal on discrete mathematics |
container_volume | 10 |
creator | RUBINSTEIN, J. H THOMAS, D. A WORMALD, N. C |
description | We give a polynomial time algorithm for solving the Euclidean Steiner tree problem when the terminals are constrained to lie on a fixed finite set of disjoint finite-length compact simple smooth curves. The problem is known to be NP-hard in general. We also show it to be NP-hard if the terminals lie on two parallel infinite lines or on a bent line segment provided the bend has an angle of less than $120^\circ$. |
doi_str_mv | 10.1137/S0895480192241190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925690883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599807281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-7cc12c6fdc7330621c60b8d5b82603d7004f8f753b23835279b270f9caf4f9403</originalsourceid><addsrcrecordid>eNplkE9Lw0AUxBdRMFY_gLcgXqPv7f89StEqFDxUz2Gz2YWUNqm7ieC3d0OLF0_vwW9mGIaQW4QHRKYeN6CN4BrQUMoRDZyRAsGISiGX56SYcTXzS3KV0hYAOUdRENyMvut9LMfofSrDkD8f911vd6l0Q5_GaDNvy3Eo3RS_fbomFyFDf3O6C_L58vyxfK3W76u35dO6ctSYsVLOIXUytE4xBpKik9DoVjSaSmCtAuBBByVYQ5lmgirTUAXBOBt4MBzYgtwdcw9x-Jp8GuvtMMW5V22okAa0ZlmER5GLQ0rRh_oQu72NPzVCPQ9T_xsme-5PwTY5uwvR9q5Lf8ZcDwRQ9gtiy2Bt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925690883</pqid></control><display><type>article</type><title>Steiner trees for terminals constrained to curves</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>RUBINSTEIN, J. H ; THOMAS, D. A ; WORMALD, N. C</creator><creatorcontrib>RUBINSTEIN, J. H ; THOMAS, D. A ; WORMALD, N. C</creatorcontrib><description>We give a polynomial time algorithm for solving the Euclidean Steiner tree problem when the terminals are constrained to lie on a fixed finite set of disjoint finite-length compact simple smooth curves. The problem is known to be NP-hard in general. We also show it to be NP-hard if the terminals lie on two parallel infinite lines or on a bent line segment provided the bend has an angle of less than $120^\circ$.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/S0895480192241190</identifier><identifier>CODEN: SJDMEC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Graph theory ; Graphs ; Information retrieval. Graph ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>SIAM journal on discrete mathematics, 1997-02, Vol.10 (1), p.1-17</ispartof><rights>1997 INIST-CNRS</rights><rights>[Copyright] © 1997 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-7cc12c6fdc7330621c60b8d5b82603d7004f8f753b23835279b270f9caf4f9403</citedby><cites>FETCH-LOGICAL-c299t-7cc12c6fdc7330621c60b8d5b82603d7004f8f753b23835279b270f9caf4f9403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2600502$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RUBINSTEIN, J. H</creatorcontrib><creatorcontrib>THOMAS, D. A</creatorcontrib><creatorcontrib>WORMALD, N. C</creatorcontrib><title>Steiner trees for terminals constrained to curves</title><title>SIAM journal on discrete mathematics</title><description>We give a polynomial time algorithm for solving the Euclidean Steiner tree problem when the terminals are constrained to lie on a fixed finite set of disjoint finite-length compact simple smooth curves. The problem is known to be NP-hard in general. We also show it to be NP-hard if the terminals lie on two parallel infinite lines or on a bent line segment provided the bend has an angle of less than $120^\circ$.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9Lw0AUxBdRMFY_gLcgXqPv7f89StEqFDxUz2Gz2YWUNqm7ieC3d0OLF0_vwW9mGIaQW4QHRKYeN6CN4BrQUMoRDZyRAsGISiGX56SYcTXzS3KV0hYAOUdRENyMvut9LMfofSrDkD8f911vd6l0Q5_GaDNvy3Eo3RS_fbomFyFDf3O6C_L58vyxfK3W76u35dO6ctSYsVLOIXUytE4xBpKik9DoVjSaSmCtAuBBByVYQ5lmgirTUAXBOBt4MBzYgtwdcw9x-Jp8GuvtMMW5V22okAa0ZlmER5GLQ0rRh_oQu72NPzVCPQ9T_xsme-5PwTY5uwvR9q5Lf8ZcDwRQ9gtiy2Bt</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>RUBINSTEIN, J. H</creator><creator>THOMAS, D. A</creator><creator>WORMALD, N. C</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19970201</creationdate><title>Steiner trees for terminals constrained to curves</title><author>RUBINSTEIN, J. H ; THOMAS, D. A ; WORMALD, N. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-7cc12c6fdc7330621c60b8d5b82603d7004f8f753b23835279b270f9caf4f9403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RUBINSTEIN, J. H</creatorcontrib><creatorcontrib>THOMAS, D. A</creatorcontrib><creatorcontrib>WORMALD, N. C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RUBINSTEIN, J. H</au><au>THOMAS, D. A</au><au>WORMALD, N. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steiner trees for terminals constrained to curves</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>1997-02-01</date><risdate>1997</risdate><volume>10</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><coden>SJDMEC</coden><abstract>We give a polynomial time algorithm for solving the Euclidean Steiner tree problem when the terminals are constrained to lie on a fixed finite set of disjoint finite-length compact simple smooth curves. The problem is known to be NP-hard in general. We also show it to be NP-hard if the terminals lie on two parallel infinite lines or on a bent line segment provided the bend has an angle of less than $120^\circ$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0895480192241190</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 1997-02, Vol.10 (1), p.1-17 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_journals_925690883 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Algorithms Applied sciences Approximation Combinatorics Combinatorics. Ordered structures Computer science control theory systems Exact sciences and technology Flows in networks. Combinatorial problems Graph theory Graphs Information retrieval. Graph Mathematics Operational research and scientific management Operational research. Management science Sciences and techniques of general use Theoretical computing |
title | Steiner trees for terminals constrained to curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steiner%20trees%20for%20terminals%20constrained%20to%20curves&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=RUBINSTEIN,%20J.%20H&rft.date=1997-02-01&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0895-4801&rft.eissn=1095-7146&rft.coden=SJDMEC&rft_id=info:doi/10.1137/S0895480192241190&rft_dat=%3Cproquest_cross%3E2599807281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925690883&rft_id=info:pmid/&rfr_iscdi=true |