Radius three trees in graphs with large chromatic number
A class $\Gamma$ of graphs is $\chi$-bounded if there exists a function $f$ such that $\chi \left(G\right) \leq f \left(\omega \left(G\right) \right)$ for all graphs $G \in \Gamma$, where $\chi$ denotes chromatic number and $\omega$ denotes clique number. Gyarfas and Sumner independently conjectured...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2004-01, Vol.17 (4), p.571-581 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 581 |
---|---|
container_issue | 4 |
container_start_page | 571 |
container_title | SIAM journal on discrete mathematics |
container_volume | 17 |
creator | KIERSTEAD, H. A YINGXIAN ZHU |
description | A class $\Gamma$ of graphs is $\chi$-bounded if there exists a function $f$ such that $\chi \left(G\right) \leq f \left(\omega \left(G\right) \right)$ for all graphs $G \in \Gamma$, where $\chi$ denotes chromatic number and $\omega$ denotes clique number. Gyarfas and Sumner independently conjectured that, for any tree T, the class ${\rm Forb} \left(T\right)$, consisting of graphs that do not contain T as an induced subgraph, is $\chi$-bounded. The first author and Penrice showed that this conjecture is true for any radius two tree. Here we use the work of several authors to show that the conjecture is true for radius three trees obtained from radius two trees by making exactly one subdivision in every edge adjacent to the root. These are the only trees with radius greater than two, other than subdivided stars, for which the conjecture is known to be true. |
doi_str_mv | 10.1137/S0895480198339869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925656579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599637951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-5d7a5c66e4994e04edfe2046fea711819c212aa0b297024fb2b0a24d5ab815903</originalsourceid><addsrcrecordid>eNplUEtLxDAQDqLguvoDvAXBY3UmTdLkKIuuwoLg41ymabrtstuuSYv4723ZBQ_OwMzhe8HH2DXCHWKa3b-DsUoaQGvS1BptT9gMwaokQ6lP2WyCkwk_ZxcxbgBQSlQzZt6obIbI-zp4z_vxRN60fB1oX0f-3fQ131JYe-7q0O2obxxvh13hwyU7q2gb_dXxz9nn0-PH4jlZvS5fFg-rxKUAfaLKjJTT2ktrpQfpy8oLkLrylCEatE6gIIJC2AyErApRAAlZKioMKgvpnN0cfPeh-xp87PNNN4R2jMytUHrczI4kPJBc6GIMvsr3odlR-MkR8qmf_F8_o-b2aEzR0bYK1Lom_gm1kONA-gv5PmN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925656579</pqid></control><display><type>article</type><title>Radius three trees in graphs with large chromatic number</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>KIERSTEAD, H. A ; YINGXIAN ZHU</creator><creatorcontrib>KIERSTEAD, H. A ; YINGXIAN ZHU</creatorcontrib><description>A class $\Gamma$ of graphs is $\chi$-bounded if there exists a function $f$ such that $\chi \left(G\right) \leq f \left(\omega \left(G\right) \right)$ for all graphs $G \in \Gamma$, where $\chi$ denotes chromatic number and $\omega$ denotes clique number. Gyarfas and Sumner independently conjectured that, for any tree T, the class ${\rm Forb} \left(T\right)$, consisting of graphs that do not contain T as an induced subgraph, is $\chi$-bounded. The first author and Penrice showed that this conjecture is true for any radius two tree. Here we use the work of several authors to show that the conjecture is true for radius three trees obtained from radius two trees by making exactly one subdivision in every edge adjacent to the root. These are the only trees with radius greater than two, other than subdivided stars, for which the conjecture is known to be true.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/S0895480198339869</identifier><identifier>CODEN: SJDMEC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Graph theory ; Graphs ; Mathematics ; Neighborhoods ; Sciences and techniques of general use</subject><ispartof>SIAM journal on discrete mathematics, 2004-01, Vol.17 (4), p.571-581</ispartof><rights>2004 INIST-CNRS</rights><rights>[Copyright] © 2004 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-5d7a5c66e4994e04edfe2046fea711819c212aa0b297024fb2b0a24d5ab815903</citedby><cites>FETCH-LOGICAL-c300t-5d7a5c66e4994e04edfe2046fea711819c212aa0b297024fb2b0a24d5ab815903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16244440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KIERSTEAD, H. A</creatorcontrib><creatorcontrib>YINGXIAN ZHU</creatorcontrib><title>Radius three trees in graphs with large chromatic number</title><title>SIAM journal on discrete mathematics</title><description>A class $\Gamma$ of graphs is $\chi$-bounded if there exists a function $f$ such that $\chi \left(G\right) \leq f \left(\omega \left(G\right) \right)$ for all graphs $G \in \Gamma$, where $\chi$ denotes chromatic number and $\omega$ denotes clique number. Gyarfas and Sumner independently conjectured that, for any tree T, the class ${\rm Forb} \left(T\right)$, consisting of graphs that do not contain T as an induced subgraph, is $\chi$-bounded. The first author and Penrice showed that this conjecture is true for any radius two tree. Here we use the work of several authors to show that the conjecture is true for radius three trees obtained from radius two trees by making exactly one subdivision in every edge adjacent to the root. These are the only trees with radius greater than two, other than subdivided stars, for which the conjecture is known to be true.</description><subject>Applied mathematics</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Neighborhoods</subject><subject>Sciences and techniques of general use</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUEtLxDAQDqLguvoDvAXBY3UmTdLkKIuuwoLg41ymabrtstuuSYv4723ZBQ_OwMzhe8HH2DXCHWKa3b-DsUoaQGvS1BptT9gMwaokQ6lP2WyCkwk_ZxcxbgBQSlQzZt6obIbI-zp4z_vxRN60fB1oX0f-3fQ131JYe-7q0O2obxxvh13hwyU7q2gb_dXxz9nn0-PH4jlZvS5fFg-rxKUAfaLKjJTT2ktrpQfpy8oLkLrylCEatE6gIIJC2AyErApRAAlZKioMKgvpnN0cfPeh-xp87PNNN4R2jMytUHrczI4kPJBc6GIMvsr3odlR-MkR8qmf_F8_o-b2aEzR0bYK1Lom_gm1kONA-gv5PmN0</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>KIERSTEAD, H. A</creator><creator>YINGXIAN ZHU</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20040101</creationdate><title>Radius three trees in graphs with large chromatic number</title><author>KIERSTEAD, H. A ; YINGXIAN ZHU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-5d7a5c66e4994e04edfe2046fea711819c212aa0b297024fb2b0a24d5ab815903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied mathematics</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Neighborhoods</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIERSTEAD, H. A</creatorcontrib><creatorcontrib>YINGXIAN ZHU</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIERSTEAD, H. A</au><au>YINGXIAN ZHU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radius three trees in graphs with large chromatic number</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>17</volume><issue>4</issue><spage>571</spage><epage>581</epage><pages>571-581</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><coden>SJDMEC</coden><abstract>A class $\Gamma$ of graphs is $\chi$-bounded if there exists a function $f$ such that $\chi \left(G\right) \leq f \left(\omega \left(G\right) \right)$ for all graphs $G \in \Gamma$, where $\chi$ denotes chromatic number and $\omega$ denotes clique number. Gyarfas and Sumner independently conjectured that, for any tree T, the class ${\rm Forb} \left(T\right)$, consisting of graphs that do not contain T as an induced subgraph, is $\chi$-bounded. The first author and Penrice showed that this conjecture is true for any radius two tree. Here we use the work of several authors to show that the conjecture is true for radius three trees obtained from radius two trees by making exactly one subdivision in every edge adjacent to the root. These are the only trees with radius greater than two, other than subdivided stars, for which the conjecture is known to be true.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0895480198339869</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 2004-01, Vol.17 (4), p.571-581 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_journals_925656579 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Applied mathematics Combinatorics Combinatorics. Ordered structures Exact sciences and technology Graph theory Graphs Mathematics Neighborhoods Sciences and techniques of general use |
title | Radius three trees in graphs with large chromatic number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radius%20three%20trees%20in%20graphs%20with%20large%20chromatic%20number&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=KIERSTEAD,%20H.%20A&rft.date=2004-01-01&rft.volume=17&rft.issue=4&rft.spage=571&rft.epage=581&rft.pages=571-581&rft.issn=0895-4801&rft.eissn=1095-7146&rft.coden=SJDMEC&rft_id=info:doi/10.1137/S0895480198339869&rft_dat=%3Cproquest_cross%3E2599637951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925656579&rft_id=info:pmid/&rfr_iscdi=true |