Pairwise colliding permutations and the capacity of infinite graphs
We call two permutations of the first n naturals colliding if they map at least one number to consecutive naturals. We give bounds for the exponential asymptotics of the largest cardinality of any set of pairwise colliding permutations of [n]. We relate this problem to the determination of the Shann...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2006-01, Vol.20 (1), p.203-212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 1 |
container_start_page | 203 |
container_title | SIAM journal on discrete mathematics |
container_volume | 20 |
creator | Körner, János Malvenuto, Claudia |
description | We call two permutations of the first n naturals colliding if they map at least one number to consecutive naturals. We give bounds for the exponential asymptotics of the largest cardinality of any set of pairwise colliding permutations of [n]. We relate this problem to the determination of the Shannon capacity of an infinite graph and initiate the study of analogous problems for infinite graphs with finite chromatic number. |
doi_str_mv | 10.1137/050632877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925639627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599533031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-68a9fce83c8fb2e93a4e2f07c5812418397bd9a046d19b9cfb5397cef98e6b73</originalsourceid><addsrcrecordid>eNo9UF9LwzAcDKJgnT74DYJvPlTzS9L8eZShUxjow95LmiZbRtfWJEX27e2Y-HTH3XEHh9A9kCcAJp9JRQSjSsoLVADRVSmBi0tUEDVzrghco5uU9oQA51AVaPllQvwJyWE7dF1oQ7_Fo4uHKZschj5h07c472bbjMaGfMSDx6H3oQ_Z4W004y7doitvuuTu_nCBNm-vm-V7uf5cfSxf1qWlGnIplNHeOsWs8g11mhnuqCfSVgooB8W0bFptCBct6EZb31SzZJ3XyolGsgV6ONeOcfieXMr1fphiPy_WmlaCaUFPocdzyMYhpeh8PcZwMPFYA6lPD9X_D7FfU9dYEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925639627</pqid></control><display><type>article</type><title>Pairwise colliding permutations and the capacity of infinite graphs</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Körner, János ; Malvenuto, Claudia</creator><creatorcontrib>Körner, János ; Malvenuto, Claudia</creatorcontrib><description>We call two permutations of the first n naturals colliding if they map at least one number to consecutive naturals. We give bounds for the exponential asymptotics of the largest cardinality of any set of pairwise colliding permutations of [n]. We relate this problem to the determination of the Shannon capacity of an infinite graph and initiate the study of analogous problems for infinite graphs with finite chromatic number.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/050632877</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Graphs</subject><ispartof>SIAM journal on discrete mathematics, 2006-01, Vol.20 (1), p.203-212</ispartof><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-68a9fce83c8fb2e93a4e2f07c5812418397bd9a046d19b9cfb5397cef98e6b73</citedby><cites>FETCH-LOGICAL-c291t-68a9fce83c8fb2e93a4e2f07c5812418397bd9a046d19b9cfb5397cef98e6b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,27901,27902</link.rule.ids></links><search><creatorcontrib>Körner, János</creatorcontrib><creatorcontrib>Malvenuto, Claudia</creatorcontrib><title>Pairwise colliding permutations and the capacity of infinite graphs</title><title>SIAM journal on discrete mathematics</title><description>We call two permutations of the first n naturals colliding if they map at least one number to consecutive naturals. We give bounds for the exponential asymptotics of the largest cardinality of any set of pairwise colliding permutations of [n]. We relate this problem to the determination of the Shannon capacity of an infinite graph and initiate the study of analogous problems for infinite graphs with finite chromatic number.</description><subject>Graphs</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UF9LwzAcDKJgnT74DYJvPlTzS9L8eZShUxjow95LmiZbRtfWJEX27e2Y-HTH3XEHh9A9kCcAJp9JRQSjSsoLVADRVSmBi0tUEDVzrghco5uU9oQA51AVaPllQvwJyWE7dF1oQ7_Fo4uHKZschj5h07c472bbjMaGfMSDx6H3oQ_Z4W004y7doitvuuTu_nCBNm-vm-V7uf5cfSxf1qWlGnIplNHeOsWs8g11mhnuqCfSVgooB8W0bFptCBct6EZb31SzZJ3XyolGsgV6ONeOcfieXMr1fphiPy_WmlaCaUFPocdzyMYhpeh8PcZwMPFYA6lPD9X_D7FfU9dYEA</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Körner, János</creator><creator>Malvenuto, Claudia</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200601</creationdate><title>Pairwise colliding permutations and the capacity of infinite graphs</title><author>Körner, János ; Malvenuto, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-68a9fce83c8fb2e93a4e2f07c5812418397bd9a046d19b9cfb5397cef98e6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Körner, János</creatorcontrib><creatorcontrib>Malvenuto, Claudia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Körner, János</au><au>Malvenuto, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pairwise colliding permutations and the capacity of infinite graphs</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2006-01</date><risdate>2006</risdate><volume>20</volume><issue>1</issue><spage>203</spage><epage>212</epage><pages>203-212</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><abstract>We call two permutations of the first n naturals colliding if they map at least one number to consecutive naturals. We give bounds for the exponential asymptotics of the largest cardinality of any set of pairwise colliding permutations of [n]. We relate this problem to the determination of the Shannon capacity of an infinite graph and initiate the study of analogous problems for infinite graphs with finite chromatic number.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/050632877</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 2006-01, Vol.20 (1), p.203-212 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_journals_925639627 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Graphs |
title | Pairwise colliding permutations and the capacity of infinite graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pairwise%20colliding%20permutations%20and%20the%20capacity%20of%20infinite%20graphs&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=K%C3%B6rner,%20J%C3%A1nos&rft.date=2006-01&rft.volume=20&rft.issue=1&rft.spage=203&rft.epage=212&rft.pages=203-212&rft.issn=0895-4801&rft.eissn=1095-7146&rft_id=info:doi/10.1137/050632877&rft_dat=%3Cproquest_cross%3E2599533031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925639627&rft_id=info:pmid/&rfr_iscdi=true |