On a Lower Bound for Short Noncontractible Cycles in Embedded Graphs
In this paper, a technique is developed that allows the construction of a triangulation of a closed orientable surface of genus $g$ by an $n$-vertex graph in such a way that the triangulation does not have short noncontractible cycles. Using this technique, a counterexample is constructed to a conje...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 1990-05, Vol.3 (2), p.281-293 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 293 |
---|---|
container_issue | 2 |
container_start_page | 281 |
container_title | SIAM journal on discrete mathematics |
container_volume | 3 |
creator | Przytycka, T. Przytycki, J. H. |
description | In this paper, a technique is developed that allows the construction of a triangulation of a closed orientable surface of genus $g$ by an $n$-vertex graph in such a way that the triangulation does not have short noncontractible cycles. Using this technique, a counterexample is constructed to a conjecture by Hutchinson that the length of the shortest noncontractible cycle in any such triangulation is $O(\sqrt{n/g} )$. The presented technique can also be used to show that the function $\sqrt{n/g} \log^{ *} g$ provides a lower bound for the shortest noncontractible cycle in a triangulation of a surface of genus $g$. |
doi_str_mv | 10.1137/0403024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925631818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599453931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c978-60777e6b53b5d83256f07f2b3c4ad7adc87a033ea6f06ab80b70b3cf3ed164d83</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqEgXsHiwimwjp3YOUIoBSmiB3qP_KumSuNgJ0J9-6ZqTzva-XZWGoQeCbwQQvkrMKCQsSuUECjzlBNWXKMExKyZAHKL7mLcARDGSJ6gj3WPJa79vw343U-9wc4H_Lv1YcQ_vte-H4PUY6s6i6uD7mzEbY-Xe2WNsQavghy28R7dONlF-3CZC7T5XG6qr7Rer76rtzrVJRdpAZxzW6icqtwImuWFA-4yRTWThkujBZdAqZXzvpBKgOIwm45aQwo2XyzQ0zl2CP5vsnFsdn4K_fyxKec0SgQ5Qc9nSAcfY7CuGUK7l-HQEGhOBTWXgugRAWhVyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925631818</pqid></control><display><type>article</type><title>On a Lower Bound for Short Noncontractible Cycles in Embedded Graphs</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Przytycka, T. ; Przytycki, J. H.</creator><creatorcontrib>Przytycka, T. ; Przytycki, J. H.</creatorcontrib><description>In this paper, a technique is developed that allows the construction of a triangulation of a closed orientable surface of genus $g$ by an $n$-vertex graph in such a way that the triangulation does not have short noncontractible cycles. Using this technique, a counterexample is constructed to a conjecture by Hutchinson that the length of the shortest noncontractible cycle in any such triangulation is $O(\sqrt{n/g} )$. The presented technique can also be used to show that the function $\sqrt{n/g} \log^{ *} g$ provides a lower bound for the shortest noncontractible cycle in a triangulation of a surface of genus $g$.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/0403024</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algebra</subject><ispartof>SIAM journal on discrete mathematics, 1990-05, Vol.3 (2), p.281-293</ispartof><rights>[Copyright] © 1990 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c978-60777e6b53b5d83256f07f2b3c4ad7adc87a033ea6f06ab80b70b3cf3ed164d83</citedby><cites>FETCH-LOGICAL-c978-60777e6b53b5d83256f07f2b3c4ad7adc87a033ea6f06ab80b70b3cf3ed164d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,27901,27902</link.rule.ids></links><search><creatorcontrib>Przytycka, T.</creatorcontrib><creatorcontrib>Przytycki, J. H.</creatorcontrib><title>On a Lower Bound for Short Noncontractible Cycles in Embedded Graphs</title><title>SIAM journal on discrete mathematics</title><description>In this paper, a technique is developed that allows the construction of a triangulation of a closed orientable surface of genus $g$ by an $n$-vertex graph in such a way that the triangulation does not have short noncontractible cycles. Using this technique, a counterexample is constructed to a conjecture by Hutchinson that the length of the shortest noncontractible cycle in any such triangulation is $O(\sqrt{n/g} )$. The presented technique can also be used to show that the function $\sqrt{n/g} \log^{ *} g$ provides a lower bound for the shortest noncontractible cycle in a triangulation of a surface of genus $g$.</description><subject>Algebra</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkM1OwzAQhC0EEqEgXsHiwimwjp3YOUIoBSmiB3qP_KumSuNgJ0J9-6ZqTzva-XZWGoQeCbwQQvkrMKCQsSuUECjzlBNWXKMExKyZAHKL7mLcARDGSJ6gj3WPJa79vw343U-9wc4H_Lv1YcQ_vte-H4PUY6s6i6uD7mzEbY-Xe2WNsQavghy28R7dONlF-3CZC7T5XG6qr7Rer76rtzrVJRdpAZxzW6icqtwImuWFA-4yRTWThkujBZdAqZXzvpBKgOIwm45aQwo2XyzQ0zl2CP5vsnFsdn4K_fyxKec0SgQ5Qc9nSAcfY7CuGUK7l-HQEGhOBTWXgugRAWhVyg</recordid><startdate>199005</startdate><enddate>199005</enddate><creator>Przytycka, T.</creator><creator>Przytycki, J. H.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>199005</creationdate><title>On a Lower Bound for Short Noncontractible Cycles in Embedded Graphs</title><author>Przytycka, T. ; Przytycki, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c978-60777e6b53b5d83256f07f2b3c4ad7adc87a033ea6f06ab80b70b3cf3ed164d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Przytycka, T.</creatorcontrib><creatorcontrib>Przytycki, J. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Przytycka, T.</au><au>Przytycki, J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Lower Bound for Short Noncontractible Cycles in Embedded Graphs</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>1990-05</date><risdate>1990</risdate><volume>3</volume><issue>2</issue><spage>281</spage><epage>293</epage><pages>281-293</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><abstract>In this paper, a technique is developed that allows the construction of a triangulation of a closed orientable surface of genus $g$ by an $n$-vertex graph in such a way that the triangulation does not have short noncontractible cycles. Using this technique, a counterexample is constructed to a conjecture by Hutchinson that the length of the shortest noncontractible cycle in any such triangulation is $O(\sqrt{n/g} )$. The presented technique can also be used to show that the function $\sqrt{n/g} \log^{ *} g$ provides a lower bound for the shortest noncontractible cycle in a triangulation of a surface of genus $g$.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0403024</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 1990-05, Vol.3 (2), p.281-293 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_journals_925631818 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Algebra |
title | On a Lower Bound for Short Noncontractible Cycles in Embedded Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Lower%20Bound%20for%20Short%20Noncontractible%20Cycles%20in%20Embedded%20Graphs&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=Przytycka,%20T.&rft.date=1990-05&rft.volume=3&rft.issue=2&rft.spage=281&rft.epage=293&rft.pages=281-293&rft.issn=0895-4801&rft.eissn=1095-7146&rft_id=info:doi/10.1137/0403024&rft_dat=%3Cproquest_cross%3E2599453931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925631818&rft_id=info:pmid/&rfr_iscdi=true |