Representations of graphs on a cylinder
A complete characterization of the class of graphs that admit a cylindric visibility representation is presented, where vertices are represented by intervals parallel to the axis of the cylinder and the edges correspond to pairs of visible intervals. Moreover, linear time algorithms are given for te...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 1991-02, Vol.4 (1), p.139-149 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 1 |
container_start_page | 139 |
container_title | SIAM journal on discrete mathematics |
container_volume | 4 |
creator | TAMASSIA, R TOLLIS, I. G |
description | A complete characterization of the class of graphs that admit a cylindric visibility representation is presented, where vertices are represented by intervals parallel to the axis of the cylinder and the edges correspond to pairs of visible intervals. Moreover, linear time algorithms are given for testing the existence of and constructing such a representation. Important applications of cylindric visibility representations can be found in the layout of regular VLSI circuits, such as linear systolic arrays and bit-slice architectures. Also, alternative "dual" characterizations are presented of the graphs that admit visibility representations in the plane and in the cylinder.It is interesting to observe that neither of these two classes is contained in the other, although they have a nonempty intersection. |
doi_str_mv | 10.1137/0404014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925631079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599450001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-4ef0b125abcee0cb56f15a4f28398e6ce3f1c29965ccdec1450a1a6f066c5de73</originalsourceid><addsrcrecordid>eNo9kE9LxDAUxIMoWFfxKxQR9lTNa_60OcriqrAgiJ5D-vqiXWpbk-5hv72RXWQOM4cfMzCMXQO_AxDVPZdJIE9YBtyoogKpT1nG65RlzeGcXcS45YmQoDK2fKMpUKRhdnM3DjEfff4Z3PSV0pC7HPd9N7QULtmZd32kq6Mv2Mf68X31XGxen15WD5sCS4C5kOR5A6VyDRJxbJT2oJz0ZS1MTRpJeMDSGK0QW0KQijtw2nOtUbVUiQW7OfROYfzZUZztdtyFIU1aUyotgFcmQcsDhGGMMZC3U-i-Xdhb4PbvBHs8IZG3xzoX0fU-uAG7-I8rBSDrUvwCN8hZcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925631079</pqid></control><display><type>article</type><title>Representations of graphs on a cylinder</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>TAMASSIA, R ; TOLLIS, I. G</creator><creatorcontrib>TAMASSIA, R ; TOLLIS, I. G</creatorcontrib><description>A complete characterization of the class of graphs that admit a cylindric visibility representation is presented, where vertices are represented by intervals parallel to the axis of the cylinder and the edges correspond to pairs of visible intervals. Moreover, linear time algorithms are given for testing the existence of and constructing such a representation. Important applications of cylindric visibility representations can be found in the layout of regular VLSI circuits, such as linear systolic arrays and bit-slice architectures. Also, alternative "dual" characterizations are presented of the graphs that admit visibility representations in the plane and in the cylinder.It is interesting to observe that neither of these two classes is contained in the other, although they have a nonempty intersection.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/0404014</identifier><identifier>CODEN: SJDMEC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Graphs ; Information retrieval. Graph ; Theoretical computing</subject><ispartof>SIAM journal on discrete mathematics, 1991-02, Vol.4 (1), p.139-149</ispartof><rights>1992 INIST-CNRS</rights><rights>[Copyright] © 1991 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-4ef0b125abcee0cb56f15a4f28398e6ce3f1c29965ccdec1450a1a6f066c5de73</citedby><cites>FETCH-LOGICAL-c211t-4ef0b125abcee0cb56f15a4f28398e6ce3f1c29965ccdec1450a1a6f066c5de73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5511482$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TAMASSIA, R</creatorcontrib><creatorcontrib>TOLLIS, I. G</creatorcontrib><title>Representations of graphs on a cylinder</title><title>SIAM journal on discrete mathematics</title><description>A complete characterization of the class of graphs that admit a cylindric visibility representation is presented, where vertices are represented by intervals parallel to the axis of the cylinder and the edges correspond to pairs of visible intervals. Moreover, linear time algorithms are given for testing the existence of and constructing such a representation. Important applications of cylindric visibility representations can be found in the layout of regular VLSI circuits, such as linear systolic arrays and bit-slice architectures. Also, alternative "dual" characterizations are presented of the graphs that admit visibility representations in the plane and in the cylinder.It is interesting to observe that neither of these two classes is contained in the other, although they have a nonempty intersection.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Theoretical computing</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE9LxDAUxIMoWFfxKxQR9lTNa_60OcriqrAgiJ5D-vqiXWpbk-5hv72RXWQOM4cfMzCMXQO_AxDVPZdJIE9YBtyoogKpT1nG65RlzeGcXcS45YmQoDK2fKMpUKRhdnM3DjEfff4Z3PSV0pC7HPd9N7QULtmZd32kq6Mv2Mf68X31XGxen15WD5sCS4C5kOR5A6VyDRJxbJT2oJz0ZS1MTRpJeMDSGK0QW0KQijtw2nOtUbVUiQW7OfROYfzZUZztdtyFIU1aUyotgFcmQcsDhGGMMZC3U-i-Xdhb4PbvBHs8IZG3xzoX0fU-uAG7-I8rBSDrUvwCN8hZcQ</recordid><startdate>19910201</startdate><enddate>19910201</enddate><creator>TAMASSIA, R</creator><creator>TOLLIS, I. G</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19910201</creationdate><title>Representations of graphs on a cylinder</title><author>TAMASSIA, R ; TOLLIS, I. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-4ef0b125abcee0cb56f15a4f28398e6ce3f1c29965ccdec1450a1a6f066c5de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAMASSIA, R</creatorcontrib><creatorcontrib>TOLLIS, I. G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAMASSIA, R</au><au>TOLLIS, I. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representations of graphs on a cylinder</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>1991-02-01</date><risdate>1991</risdate><volume>4</volume><issue>1</issue><spage>139</spage><epage>149</epage><pages>139-149</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><coden>SJDMEC</coden><abstract>A complete characterization of the class of graphs that admit a cylindric visibility representation is presented, where vertices are represented by intervals parallel to the axis of the cylinder and the edges correspond to pairs of visible intervals. Moreover, linear time algorithms are given for testing the existence of and constructing such a representation. Important applications of cylindric visibility representations can be found in the layout of regular VLSI circuits, such as linear systolic arrays and bit-slice architectures. Also, alternative "dual" characterizations are presented of the graphs that admit visibility representations in the plane and in the cylinder.It is interesting to observe that neither of these two classes is contained in the other, although they have a nonempty intersection.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0404014</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 1991-02, Vol.4 (1), p.139-149 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_journals_925631079 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Algorithms Applied sciences Computer science control theory systems Exact sciences and technology Graphs Information retrieval. Graph Theoretical computing |
title | Representations of graphs on a cylinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representations%20of%20graphs%20on%20a%20cylinder&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=TAMASSIA,%20R&rft.date=1991-02-01&rft.volume=4&rft.issue=1&rft.spage=139&rft.epage=149&rft.pages=139-149&rft.issn=0895-4801&rft.eissn=1095-7146&rft.coden=SJDMEC&rft_id=info:doi/10.1137/0404014&rft_dat=%3Cproquest_cross%3E2599450001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925631079&rft_id=info:pmid/&rfr_iscdi=true |