Minkowski addition of polytopes: computational complexity and applications to Gröbner bases
This paper deals with a problem from computational convexity and its application to computer algebra. This paper determines the complexity of computing the Minkowski sum of $k$ convex polytopes in $\mathbb{R}^d $, which are presented either in terms of vertices or in terms of facets. In particular,...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 1993-05, Vol.6 (2), p.246-269 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | 2 |
container_start_page | 246 |
container_title | SIAM journal on discrete mathematics |
container_volume | 6 |
creator | GRITZMANN, P STURMFELS, B |
description | This paper deals with a problem from computational convexity and its application to computer algebra. This paper determines the complexity of computing the Minkowski sum of $k$ convex polytopes in $\mathbb{R}^d $, which are presented either in terms of vertices or in terms of facets. In particular, if the dimension $d$ is fixed, the authors obtain a polynomial time algorithm for adding $k$ polytopes with up to $n$ vertices. The second part of this paper introduces dynamic versions of Buchberger's Grobner bases algorithm for polynomial ideals. Using the Minkowski addition of Newton polytopes, the authors show that the following problem can be solved in polynomial time for any finite set of polynomials $\mathcal{T} \subset K [ x_1 , \ldots ,x_d ]$, where $d$ is fixed: Does there exist a term order $\tau $ such that $\mathcal{T}$ is a Grobner basis for its ideal with respect to $\tau $? If not, find an optimal term order for $\mathcal{T}$ with respect to a natural Hilbert function criterion. |
doi_str_mv | 10.1137/0406019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925623035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599384041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-4ddf2d4ea273f4165b2db619ce9aeb21f6e4f63303e9c653728e66b4d374ed743</originalsourceid><addsrcrecordid>eNo9kN1KAzEQhYMoWKv4CkEEr1YzSTa7652UWoWKN3onLNn8QNrtZk1StC_mC_hibn_wamY43xwOB6FLILcArLgjnAgC1REaAanyrAAujtGIlMPOSwKn6CzGBSHAOeQj9PHiuqX_ikuHpdYuOd9hb3Hv203yvYn3WPlVv05yq8h2d7Xm26UNlp3Gsu9bp3ZixMnjWfj9aToTcCOjiefoxMo2movDHKP3x-nb5Cmbv86eJw_zTFGAlHGtLdXcSFowy0HkDdWNgEqZSpqGghWGW8EYYaZSImcFLY0QDdes4EYXnI3R1d63D_5zbWKqF34dhrixrmgu6PCZD9DNHlLBxxiMrfvgVjJsaiD1trn60NxAXh_sZFSytUF2ysV_nJWCk7Jgf-RHbkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925623035</pqid></control><display><type>article</type><title>Minkowski addition of polytopes: computational complexity and applications to Gröbner bases</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>GRITZMANN, P ; STURMFELS, B</creator><creatorcontrib>GRITZMANN, P ; STURMFELS, B</creatorcontrib><description>This paper deals with a problem from computational convexity and its application to computer algebra. This paper determines the complexity of computing the Minkowski sum of $k$ convex polytopes in $\mathbb{R}^d $, which are presented either in terms of vertices or in terms of facets. In particular, if the dimension $d$ is fixed, the authors obtain a polynomial time algorithm for adding $k$ polytopes with up to $n$ vertices. The second part of this paper introduces dynamic versions of Buchberger's Grobner bases algorithm for polynomial ideals. Using the Minkowski addition of Newton polytopes, the authors show that the following problem can be solved in polynomial time for any finite set of polynomials $\mathcal{T} \subset K [ x_1 , \ldots ,x_d ]$, where $d$ is fixed: Does there exist a term order $\tau $ such that $\mathcal{T}$ is a Grobner basis for its ideal with respect to $\tau $? If not, find an optimal term order for $\mathcal{T}$ with respect to a natural Hilbert function criterion.</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/0406019</identifier><identifier>CODEN: SJDMEC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Algorithms ; Applied mathematics ; Computer science ; Convex and discrete geometry ; Exact sciences and technology ; Geometry ; Linear programming ; Mathematical programming ; Mathematics ; Polynomials ; Sciences and techniques of general use</subject><ispartof>SIAM journal on discrete mathematics, 1993-05, Vol.6 (2), p.246-269</ispartof><rights>1994 INIST-CNRS</rights><rights>[Copyright] © 1993 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-4ddf2d4ea273f4165b2db619ce9aeb21f6e4f63303e9c653728e66b4d374ed743</citedby><cites>FETCH-LOGICAL-c211t-4ddf2d4ea273f4165b2db619ce9aeb21f6e4f63303e9c653728e66b4d374ed743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3174,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3864087$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GRITZMANN, P</creatorcontrib><creatorcontrib>STURMFELS, B</creatorcontrib><title>Minkowski addition of polytopes: computational complexity and applications to Gröbner bases</title><title>SIAM journal on discrete mathematics</title><description>This paper deals with a problem from computational convexity and its application to computer algebra. This paper determines the complexity of computing the Minkowski sum of $k$ convex polytopes in $\mathbb{R}^d $, which are presented either in terms of vertices or in terms of facets. In particular, if the dimension $d$ is fixed, the authors obtain a polynomial time algorithm for adding $k$ polytopes with up to $n$ vertices. The second part of this paper introduces dynamic versions of Buchberger's Grobner bases algorithm for polynomial ideals. Using the Minkowski addition of Newton polytopes, the authors show that the following problem can be solved in polynomial time for any finite set of polynomials $\mathcal{T} \subset K [ x_1 , \ldots ,x_d ]$, where $d$ is fixed: Does there exist a term order $\tau $ such that $\mathcal{T}$ is a Grobner basis for its ideal with respect to $\tau $? If not, find an optimal term order for $\mathcal{T}$ with respect to a natural Hilbert function criterion.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Computer science</subject><subject>Convex and discrete geometry</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kN1KAzEQhYMoWKv4CkEEr1YzSTa7652UWoWKN3onLNn8QNrtZk1StC_mC_hibn_wamY43xwOB6FLILcArLgjnAgC1REaAanyrAAujtGIlMPOSwKn6CzGBSHAOeQj9PHiuqX_ikuHpdYuOd9hb3Hv203yvYn3WPlVv05yq8h2d7Xm26UNlp3Gsu9bp3ZixMnjWfj9aToTcCOjiefoxMo2movDHKP3x-nb5Cmbv86eJw_zTFGAlHGtLdXcSFowy0HkDdWNgEqZSpqGghWGW8EYYaZSImcFLY0QDdes4EYXnI3R1d63D_5zbWKqF34dhrixrmgu6PCZD9DNHlLBxxiMrfvgVjJsaiD1trn60NxAXh_sZFSytUF2ysV_nJWCk7Jgf-RHbkw</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>GRITZMANN, P</creator><creator>STURMFELS, B</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19930501</creationdate><title>Minkowski addition of polytopes: computational complexity and applications to Gröbner bases</title><author>GRITZMANN, P ; STURMFELS, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-4ddf2d4ea273f4165b2db619ce9aeb21f6e4f63303e9c653728e66b4d374ed743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Computer science</topic><topic>Convex and discrete geometry</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GRITZMANN, P</creatorcontrib><creatorcontrib>STURMFELS, B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GRITZMANN, P</au><au>STURMFELS, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minkowski addition of polytopes: computational complexity and applications to Gröbner bases</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>6</volume><issue>2</issue><spage>246</spage><epage>269</epage><pages>246-269</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><coden>SJDMEC</coden><abstract>This paper deals with a problem from computational convexity and its application to computer algebra. This paper determines the complexity of computing the Minkowski sum of $k$ convex polytopes in $\mathbb{R}^d $, which are presented either in terms of vertices or in terms of facets. In particular, if the dimension $d$ is fixed, the authors obtain a polynomial time algorithm for adding $k$ polytopes with up to $n$ vertices. The second part of this paper introduces dynamic versions of Buchberger's Grobner bases algorithm for polynomial ideals. Using the Minkowski addition of Newton polytopes, the authors show that the following problem can be solved in polynomial time for any finite set of polynomials $\mathcal{T} \subset K [ x_1 , \ldots ,x_d ]$, where $d$ is fixed: Does there exist a term order $\tau $ such that $\mathcal{T}$ is a Grobner basis for its ideal with respect to $\tau $? If not, find an optimal term order for $\mathcal{T}$ with respect to a natural Hilbert function criterion.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0406019</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4801 |
ispartof | SIAM journal on discrete mathematics, 1993-05, Vol.6 (2), p.246-269 |
issn | 0895-4801 1095-7146 |
language | eng |
recordid | cdi_proquest_journals_925623035 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Algebra Algorithms Applied mathematics Computer science Convex and discrete geometry Exact sciences and technology Geometry Linear programming Mathematical programming Mathematics Polynomials Sciences and techniques of general use |
title | Minkowski addition of polytopes: computational complexity and applications to Gröbner bases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minkowski%20addition%20of%20polytopes:%20computational%20complexity%20and%20applications%20to%20Gr%C3%B6bner%20bases&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=GRITZMANN,%20P&rft.date=1993-05-01&rft.volume=6&rft.issue=2&rft.spage=246&rft.epage=269&rft.pages=246-269&rft.issn=0895-4801&rft.eissn=1095-7146&rft.coden=SJDMEC&rft_id=info:doi/10.1137/0406019&rft_dat=%3Cproquest_cross%3E2599384041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925623035&rft_id=info:pmid/&rfr_iscdi=true |