Bounding functions and rigid graphs

A function $f$bounds graphs from above if there exists an infinite family of graphs $\mathcal{G}$, such that if $G \in \mathcal{G}$ then $f(| V_G |) = | E_G |$ and for all nonempty subgraphs $H$ of $G$ we have that $f(| V_H |) \geq | E_H |$. This paper considers the question: Which functions bound g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 1996-05, Vol.9 (2), p.269-273
Hauptverfasser: ALBERTSON, M. O, HAAS, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 2
container_start_page 269
container_title SIAM journal on discrete mathematics
container_volume 9
creator ALBERTSON, M. O
HAAS, R
description A function $f$bounds graphs from above if there exists an infinite family of graphs $\mathcal{G}$, such that if $G \in \mathcal{G}$ then $f(| V_G |) = | E_G |$ and for all nonempty subgraphs $H$ of $G$ we have that $f(| V_H |) \geq | E_H |$. This paper considers the question: Which functions bound graphs?
doi_str_mv 10.1137/0409023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_925615941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599307341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-79f954773fb888e0edeb09b4501111ee077cc50263635247282a432b7f4873503</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhIMoWFfxLxQVPFXffDXJURe_YMGLnkOaJjXLmtakPfjvt7LFucwcHmZgELrEcIcxFffAQAGhR6jAoHglMKuPUQFyzkwCPkVnOW8BMGOYF-j6sZ9iG2JX-inaMfQxlya2ZQpdaMsumeErn6MTb3bZXSy-Qp_PTx_r12rz_vK2fthUlgg1VkJ5xZkQ1DdSSgeudQ2ohnHAs5wDIazlQGpaU06YIJIYRkkjPJOCcqArdHXoHVL_M7k86m0_pThPakV4jblieIZuD5BNfc7JeT2k8G3Sr8ag_w7QywEzebPUmWzNzicTbcj_OAVFai7oHjdQVaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925615941</pqid></control><display><type>article</type><title>Bounding functions and rigid graphs</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>ALBERTSON, M. O ; HAAS, R</creator><creatorcontrib>ALBERTSON, M. O ; HAAS, R</creatorcontrib><description>A function $f$bounds graphs from above if there exists an infinite family of graphs $\mathcal{G}$, such that if $G \in \mathcal{G}$ then $f(| V_G |) = | E_G |$ and for all nonempty subgraphs $H$ of $G$ we have that $f(| V_H |) \geq | E_H |$. This paper considers the question: Which functions bound graphs?</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/0409023</identifier><identifier>CODEN: SJDMEC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Graphs ; Inequality ; Information retrieval. Graph ; Mathematics ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>SIAM journal on discrete mathematics, 1996-05, Vol.9 (2), p.269-273</ispartof><rights>1996 INIST-CNRS</rights><rights>[Copyright] © 1996 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-79f954773fb888e0edeb09b4501111ee077cc50263635247282a432b7f4873503</citedby><cites>FETCH-LOGICAL-c279t-79f954773fb888e0edeb09b4501111ee077cc50263635247282a432b7f4873503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3092657$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ALBERTSON, M. O</creatorcontrib><creatorcontrib>HAAS, R</creatorcontrib><title>Bounding functions and rigid graphs</title><title>SIAM journal on discrete mathematics</title><description>A function $f$bounds graphs from above if there exists an infinite family of graphs $\mathcal{G}$, such that if $G \in \mathcal{G}$ then $f(| V_G |) = | E_G |$ and for all nonempty subgraphs $H$ of $G$ we have that $f(| V_H |) \geq | E_H |$. This paper considers the question: Which functions bound graphs?</description><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Inequality</subject><subject>Information retrieval. Graph</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LxDAYhIMoWFfxLxQVPFXffDXJURe_YMGLnkOaJjXLmtakPfjvt7LFucwcHmZgELrEcIcxFffAQAGhR6jAoHglMKuPUQFyzkwCPkVnOW8BMGOYF-j6sZ9iG2JX-inaMfQxlya2ZQpdaMsumeErn6MTb3bZXSy-Qp_PTx_r12rz_vK2fthUlgg1VkJ5xZkQ1DdSSgeudQ2ohnHAs5wDIazlQGpaU06YIJIYRkkjPJOCcqArdHXoHVL_M7k86m0_pThPakV4jblieIZuD5BNfc7JeT2k8G3Sr8ag_w7QywEzebPUmWzNzicTbcj_OAVFai7oHjdQVaw</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>ALBERTSON, M. O</creator><creator>HAAS, R</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19960501</creationdate><title>Bounding functions and rigid graphs</title><author>ALBERTSON, M. O ; HAAS, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-79f954773fb888e0edeb09b4501111ee077cc50263635247282a432b7f4873503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Inequality</topic><topic>Information retrieval. Graph</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALBERTSON, M. O</creatorcontrib><creatorcontrib>HAAS, R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALBERTSON, M. O</au><au>HAAS, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounding functions and rigid graphs</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>1996-05-01</date><risdate>1996</risdate><volume>9</volume><issue>2</issue><spage>269</spage><epage>273</epage><pages>269-273</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><coden>SJDMEC</coden><abstract>A function $f$bounds graphs from above if there exists an infinite family of graphs $\mathcal{G}$, such that if $G \in \mathcal{G}$ then $f(| V_G |) = | E_G |$ and for all nonempty subgraphs $H$ of $G$ we have that $f(| V_H |) \geq | E_H |$. This paper considers the question: Which functions bound graphs?</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0409023</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4801
ispartof SIAM journal on discrete mathematics, 1996-05, Vol.9 (2), p.269-273
issn 0895-4801
1095-7146
language eng
recordid cdi_proquest_journals_925615941
source LOCUS - SIAM's Online Journal Archive
subjects Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
Graph theory
Graphs
Inequality
Information retrieval. Graph
Mathematics
Sciences and techniques of general use
Theoretical computing
title Bounding functions and rigid graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounding%20functions%20and%20rigid%20graphs&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=ALBERTSON,%20M.%20O&rft.date=1996-05-01&rft.volume=9&rft.issue=2&rft.spage=269&rft.epage=273&rft.pages=269-273&rft.issn=0895-4801&rft.eissn=1095-7146&rft.coden=SJDMEC&rft_id=info:doi/10.1137/0409023&rft_dat=%3Cproquest_cross%3E2599307341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925615941&rft_id=info:pmid/&rfr_iscdi=true