Asymptotic formulas for zero-balanced hypergeometric series

A hypergeometric series is called $s$-balanced if the sum of denominator parameters minus the sum of numerator parameters is $s$. A nonterminating $s$-balanced hypergeometric series converges at $x = 1$ if $s$ is positive. An asymptotic formula for the partial sums of a zero-balanced _3 F_2 (1)$ is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1984-09, Vol.15 (5), p.1010-1020
Hauptverfasser: EVANS, R. J, STANTON, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1020
container_issue 5
container_start_page 1010
container_title SIAM journal on mathematical analysis
container_volume 15
creator EVANS, R. J
STANTON, D
description A hypergeometric series is called $s$-balanced if the sum of denominator parameters minus the sum of numerator parameters is $s$. A nonterminating $s$-balanced hypergeometric series converges at $x = 1$ if $s$ is positive. An asymptotic formula for the partial sums of a zero-balanced _3 F_2 (1)$ is given. A corollary is the behavior of a zero-balanced _3 F_2 (x)$ as $x$ approaches 1. Some $q$-analogues are also given.
doi_str_mv 10.1137/0515078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924944970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598771941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-f78eb494224536351584b17ae470368a6ae3bf5ee487429ebcc5cd31e77601693</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWKv4F4oInqqZJmkSPC2LX7DgRc8lzU61S7upSXuov94sWzzNHB6eeecl5BroPQCTD1SAoFKdkASoFrkEwU9JQikrc-BAz8lFCDtKoeSaJuRxFeZ-GN3Y2qxxvp86Ew5L9ove5bXpzN7iNvueB_Rf6HocfSQD-hbDJTlrTBfwapkp-Xx--li_5pv3l7f1apPbAmDMG6mw5poXBResZDGe4jVIg1zGUMqUBlndCESuJC801tYKu2WAUpYxpmYpuTl6B-9-JgxjtXOT38eTlS6imOsoSsndEbLeheCxqQbf9sbPFdDqUEy1FBPJ20VngjVd4-OLbfjHlZKCF8D-AKzJYDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924944970</pqid></control><display><type>article</type><title>Asymptotic formulas for zero-balanced hypergeometric series</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>EVANS, R. J ; STANTON, D</creator><creatorcontrib>EVANS, R. J ; STANTON, D</creatorcontrib><description>A hypergeometric series is called $s$-balanced if the sum of denominator parameters minus the sum of numerator parameters is $s$. A nonterminating $s$-balanced hypergeometric series converges at $x = 1$ if $s$ is positive. An asymptotic formula for the partial sums of a zero-balanced _3 F_2 (1)$ is given. A corollary is the behavior of a zero-balanced _3 F_2 (x)$ as $x$ approaches 1. Some $q$-analogues are also given.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0515078</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Exact sciences and technology ; Function theory, analysis ; Hypotheses ; Mathematical methods in physics ; Physics</subject><ispartof>SIAM journal on mathematical analysis, 1984-09, Vol.15 (5), p.1010-1020</ispartof><rights>1985 INIST-CNRS</rights><rights>[Copyright] © 1984 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-f78eb494224536351584b17ae470368a6ae3bf5ee487429ebcc5cd31e77601693</citedby><cites>FETCH-LOGICAL-c211t-f78eb494224536351584b17ae470368a6ae3bf5ee487429ebcc5cd31e77601693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3174,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8875421$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>EVANS, R. J</creatorcontrib><creatorcontrib>STANTON, D</creatorcontrib><title>Asymptotic formulas for zero-balanced hypergeometric series</title><title>SIAM journal on mathematical analysis</title><description>A hypergeometric series is called $s$-balanced if the sum of denominator parameters minus the sum of numerator parameters is $s$. A nonterminating $s$-balanced hypergeometric series converges at $x = 1$ if $s$ is positive. An asymptotic formula for the partial sums of a zero-balanced _3 F_2 (1)$ is given. A corollary is the behavior of a zero-balanced _3 F_2 (x)$ as $x$ approaches 1. Some $q$-analogues are also given.</description><subject>Applied mathematics</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Hypotheses</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LxDAQhoMoWKv4F4oInqqZJmkSPC2LX7DgRc8lzU61S7upSXuov94sWzzNHB6eeecl5BroPQCTD1SAoFKdkASoFrkEwU9JQikrc-BAz8lFCDtKoeSaJuRxFeZ-GN3Y2qxxvp86Ew5L9ove5bXpzN7iNvueB_Rf6HocfSQD-hbDJTlrTBfwapkp-Xx--li_5pv3l7f1apPbAmDMG6mw5poXBResZDGe4jVIg1zGUMqUBlndCESuJC801tYKu2WAUpYxpmYpuTl6B-9-JgxjtXOT38eTlS6imOsoSsndEbLeheCxqQbf9sbPFdDqUEy1FBPJ20VngjVd4-OLbfjHlZKCF8D-AKzJYDg</recordid><startdate>19840901</startdate><enddate>19840901</enddate><creator>EVANS, R. J</creator><creator>STANTON, D</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19840901</creationdate><title>Asymptotic formulas for zero-balanced hypergeometric series</title><author>EVANS, R. J ; STANTON, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-f78eb494224536351584b17ae470368a6ae3bf5ee487429ebcc5cd31e77601693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Applied mathematics</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Hypotheses</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EVANS, R. J</creatorcontrib><creatorcontrib>STANTON, D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EVANS, R. J</au><au>STANTON, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic formulas for zero-balanced hypergeometric series</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1984-09-01</date><risdate>1984</risdate><volume>15</volume><issue>5</issue><spage>1010</spage><epage>1020</epage><pages>1010-1020</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>A hypergeometric series is called $s$-balanced if the sum of denominator parameters minus the sum of numerator parameters is $s$. A nonterminating $s$-balanced hypergeometric series converges at $x = 1$ if $s$ is positive. An asymptotic formula for the partial sums of a zero-balanced _3 F_2 (1)$ is given. A corollary is the behavior of a zero-balanced _3 F_2 (x)$ as $x$ approaches 1. Some $q$-analogues are also given.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0515078</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 1984-09, Vol.15 (5), p.1010-1020
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_924944970
source LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Exact sciences and technology
Function theory, analysis
Hypotheses
Mathematical methods in physics
Physics
title Asymptotic formulas for zero-balanced hypergeometric series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20formulas%20for%20zero-balanced%20hypergeometric%20series&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=EVANS,%20R.%20J&rft.date=1984-09-01&rft.volume=15&rft.issue=5&rft.spage=1010&rft.epage=1020&rft.pages=1010-1020&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0515078&rft_dat=%3Cproquest_cross%3E2598771941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924944970&rft_id=info:pmid/&rfr_iscdi=true