Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions

The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1986-03, Vol.17 (2), p.422-450
Hauptverfasser: BOYD, W. G. C, DUNSTER, T. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 2
container_start_page 422
container_title SIAM journal on mathematical analysis
container_volume 17
creator BOYD, W. G. C
DUNSTER, T. M
description The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region which includes both the turning point and the singularity. Explicit error bounds for the difference between the approximations and the exact solutions are established. The theory is applied to find uniform asymptotic expansions for Legendre functions.
doi_str_mv 10.1137/0517033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924853781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598746781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-4a7f7dfe54208b6022efb2f02a2e4eb4d9a18a0dd9995c9019db19c1f9eb8da53</originalsourceid><addsrcrecordid>eNo9UclqHDEQFSYBjx3jXxDG4Is7UfWuozF2EhjIJT431VJpLNMjtSV1wnxW_tCahZzqUW8pisfYNYivAFX3TTTQiao6YysQsik6aOpPbCVE1RZQgzhnFzG-CQFtLcWK_Xtx1viw5Rh32zn5ZBWPflqS9S5ybzhyNWE8wEjKO134oCnwyTrCwLU1hgK5ZHHi9L7g0fiKf6zbZHNagtuj2VuXODqdd4E2y5S9MRN7YNPunv-16TXzHOd5suoQw5Pna9qQ04G4WZw6ZH9hnw1Oka5O85K9PD_9fvxRrH99__n4sC5UCZCKGjvTaUNNXYp-bEVZkhlLI0osqaax1hKhR6G1lLJRUoDUI0gFRtLYa2yqS3ZzzJ2Df18opuHN52fyyUGWdd9UXQ9ZdHcUqeBjDGSGOdgtht0AYtjXMZzqyMrbUxxGhZMJ6JSN_-V92_ZVL6sPKhiN1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924853781</pqid></control><display><type>article</type><title>Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>BOYD, W. G. C ; DUNSTER, T. M</creator><creatorcontrib>BOYD, W. G. C ; DUNSTER, T. M</creatorcontrib><description>The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region which includes both the turning point and the singularity. Explicit error bounds for the difference between the approximations and the exact solutions are established. The theory is applied to find uniform asymptotic expansions for Legendre functions.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0517033</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Exact sciences and technology ; Function theory, analysis ; Integrals ; Mathematical methods in physics ; Physics</subject><ispartof>SIAM journal on mathematical analysis, 1986-03, Vol.17 (2), p.422-450</ispartof><rights>1986 INIST-CNRS</rights><rights>[Copyright] © 1986 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-4a7f7dfe54208b6022efb2f02a2e4eb4d9a18a0dd9995c9019db19c1f9eb8da53</citedby><cites>FETCH-LOGICAL-c211t-4a7f7dfe54208b6022efb2f02a2e4eb4d9a18a0dd9995c9019db19c1f9eb8da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8668389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BOYD, W. G. C</creatorcontrib><creatorcontrib>DUNSTER, T. M</creatorcontrib><title>Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions</title><title>SIAM journal on mathematical analysis</title><description>The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region which includes both the turning point and the singularity. Explicit error bounds for the difference between the approximations and the exact solutions are established. The theory is applied to find uniform asymptotic expansions for Legendre functions.</description><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Integrals</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UclqHDEQFSYBjx3jXxDG4Is7UfWuozF2EhjIJT431VJpLNMjtSV1wnxW_tCahZzqUW8pisfYNYivAFX3TTTQiao6YysQsik6aOpPbCVE1RZQgzhnFzG-CQFtLcWK_Xtx1viw5Rh32zn5ZBWPflqS9S5ybzhyNWE8wEjKO134oCnwyTrCwLU1hgK5ZHHi9L7g0fiKf6zbZHNagtuj2VuXODqdd4E2y5S9MRN7YNPunv-16TXzHOd5suoQw5Pna9qQ04G4WZw6ZH9hnw1Oka5O85K9PD_9fvxRrH99__n4sC5UCZCKGjvTaUNNXYp-bEVZkhlLI0osqaax1hKhR6G1lLJRUoDUI0gFRtLYa2yqS3ZzzJ2Df18opuHN52fyyUGWdd9UXQ9ZdHcUqeBjDGSGOdgtht0AYtjXMZzqyMrbUxxGhZMJ6JSN_-V92_ZVL6sPKhiN1g</recordid><startdate>19860301</startdate><enddate>19860301</enddate><creator>BOYD, W. G. C</creator><creator>DUNSTER, T. M</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19860301</creationdate><title>Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions</title><author>BOYD, W. G. C ; DUNSTER, T. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-4a7f7dfe54208b6022efb2f02a2e4eb4d9a18a0dd9995c9019db19c1f9eb8da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Integrals</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOYD, W. G. C</creatorcontrib><creatorcontrib>DUNSTER, T. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOYD, W. G. C</au><au>DUNSTER, T. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1986-03-01</date><risdate>1986</risdate><volume>17</volume><issue>2</issue><spage>422</spage><epage>450</epage><pages>422-450</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region which includes both the turning point and the singularity. Explicit error bounds for the difference between the approximations and the exact solutions are established. The theory is applied to find uniform asymptotic expansions for Legendre functions.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0517033</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 1986-03, Vol.17 (2), p.422-450
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_924853781
source LOCUS - SIAM's Online Journal Archive
subjects Exact sciences and technology
Function theory, analysis
Integrals
Mathematical methods in physics
Physics
title Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20asymptotic%20solutions%20of%20a%20class%20of%20second-order%20linear%20differential%20equations%20having%20a%20turning%20point%20and%20a%20regular%20singularity,%20with%20an%20application%20to%20Legendre%20functions&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=BOYD,%20W.%20G.%20C&rft.date=1986-03-01&rft.volume=17&rft.issue=2&rft.spage=422&rft.epage=450&rft.pages=422-450&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0517033&rft_dat=%3Cproquest_cross%3E2598746781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924853781&rft_id=info:pmid/&rfr_iscdi=true