Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions
The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region wh...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1986-03, Vol.17 (2), p.422-450 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | 2 |
container_start_page | 422 |
container_title | SIAM journal on mathematical analysis |
container_volume | 17 |
creator | BOYD, W. G. C DUNSTER, T. M |
description | The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region which includes both the turning point and the singularity. Explicit error bounds for the difference between the approximations and the exact solutions are established. The theory is applied to find uniform asymptotic expansions for Legendre functions. |
doi_str_mv | 10.1137/0517033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924853781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598746781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-4a7f7dfe54208b6022efb2f02a2e4eb4d9a18a0dd9995c9019db19c1f9eb8da53</originalsourceid><addsrcrecordid>eNo9UclqHDEQFSYBjx3jXxDG4Is7UfWuozF2EhjIJT431VJpLNMjtSV1wnxW_tCahZzqUW8pisfYNYivAFX3TTTQiao6YysQsik6aOpPbCVE1RZQgzhnFzG-CQFtLcWK_Xtx1viw5Rh32zn5ZBWPflqS9S5ybzhyNWE8wEjKO134oCnwyTrCwLU1hgK5ZHHi9L7g0fiKf6zbZHNagtuj2VuXODqdd4E2y5S9MRN7YNPunv-16TXzHOd5suoQw5Pna9qQ04G4WZw6ZH9hnw1Oka5O85K9PD_9fvxRrH99__n4sC5UCZCKGjvTaUNNXYp-bEVZkhlLI0osqaax1hKhR6G1lLJRUoDUI0gFRtLYa2yqS3ZzzJ2Df18opuHN52fyyUGWdd9UXQ9ZdHcUqeBjDGSGOdgtht0AYtjXMZzqyMrbUxxGhZMJ6JSN_-V92_ZVL6sPKhiN1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924853781</pqid></control><display><type>article</type><title>Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>BOYD, W. G. C ; DUNSTER, T. M</creator><creatorcontrib>BOYD, W. G. C ; DUNSTER, T. M</creatorcontrib><description>The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region which includes both the turning point and the singularity. Explicit error bounds for the difference between the approximations and the exact solutions are established. The theory is applied to find uniform asymptotic expansions for Legendre functions.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0517033</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Exact sciences and technology ; Function theory, analysis ; Integrals ; Mathematical methods in physics ; Physics</subject><ispartof>SIAM journal on mathematical analysis, 1986-03, Vol.17 (2), p.422-450</ispartof><rights>1986 INIST-CNRS</rights><rights>[Copyright] © 1986 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-4a7f7dfe54208b6022efb2f02a2e4eb4d9a18a0dd9995c9019db19c1f9eb8da53</citedby><cites>FETCH-LOGICAL-c211t-4a7f7dfe54208b6022efb2f02a2e4eb4d9a18a0dd9995c9019db19c1f9eb8da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8668389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BOYD, W. G. C</creatorcontrib><creatorcontrib>DUNSTER, T. M</creatorcontrib><title>Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions</title><title>SIAM journal on mathematical analysis</title><description>The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region which includes both the turning point and the singularity. Explicit error bounds for the difference between the approximations and the exact solutions are established. The theory is applied to find uniform asymptotic expansions for Legendre functions.</description><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Integrals</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UclqHDEQFSYBjx3jXxDG4Is7UfWuozF2EhjIJT431VJpLNMjtSV1wnxW_tCahZzqUW8pisfYNYivAFX3TTTQiao6YysQsik6aOpPbCVE1RZQgzhnFzG-CQFtLcWK_Xtx1viw5Rh32zn5ZBWPflqS9S5ybzhyNWE8wEjKO134oCnwyTrCwLU1hgK5ZHHi9L7g0fiKf6zbZHNagtuj2VuXODqdd4E2y5S9MRN7YNPunv-16TXzHOd5suoQw5Pna9qQ04G4WZw6ZH9hnw1Oka5O85K9PD_9fvxRrH99__n4sC5UCZCKGjvTaUNNXYp-bEVZkhlLI0osqaax1hKhR6G1lLJRUoDUI0gFRtLYa2yqS3ZzzJ2Df18opuHN52fyyUGWdd9UXQ9ZdHcUqeBjDGSGOdgtht0AYtjXMZzqyMrbUxxGhZMJ6JSN_-V92_ZVL6sPKhiN1g</recordid><startdate>19860301</startdate><enddate>19860301</enddate><creator>BOYD, W. G. C</creator><creator>DUNSTER, T. M</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19860301</creationdate><title>Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions</title><author>BOYD, W. G. C ; DUNSTER, T. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-4a7f7dfe54208b6022efb2f02a2e4eb4d9a18a0dd9995c9019db19c1f9eb8da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Integrals</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOYD, W. G. C</creatorcontrib><creatorcontrib>DUNSTER, T. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOYD, W. G. C</au><au>DUNSTER, T. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1986-03-01</date><risdate>1986</risdate><volume>17</volume><issue>2</issue><spage>422</spage><epage>450</epage><pages>422-450</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>The asymptotic behaviour, as a parameter $u \to \infty $, of solutions of second-order linear differential equations with a turning point and a regular (double pole) singularity is considered. It is shown that the solutions can be approximated by expressions involving Bessel functions in a region which includes both the turning point and the singularity. Explicit error bounds for the difference between the approximations and the exact solutions are established. The theory is applied to find uniform asymptotic expansions for Legendre functions.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0517033</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 1986-03, Vol.17 (2), p.422-450 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_924853781 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Exact sciences and technology Function theory, analysis Integrals Mathematical methods in physics Physics |
title | Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20asymptotic%20solutions%20of%20a%20class%20of%20second-order%20linear%20differential%20equations%20having%20a%20turning%20point%20and%20a%20regular%20singularity,%20with%20an%20application%20to%20Legendre%20functions&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=BOYD,%20W.%20G.%20C&rft.date=1986-03-01&rft.volume=17&rft.issue=2&rft.spage=422&rft.epage=450&rft.pages=422-450&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0517033&rft_dat=%3Cproquest_cross%3E2598746781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924853781&rft_id=info:pmid/&rfr_iscdi=true |