On zeros of interpolating polynomials

Polynomials to be used in interpolation of digital signals are called interpolating polynomials. They may require modification to assure convergence of their reciprocals on the unit circle. This paper concerns discrete time windowing, which consists of scaled truncation of a series such as \[ p_N (z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1986-05, Vol.17 (3), p.734-744
Hauptverfasser: BARNARD, R. W, FORD, W. T, WANG, H. Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue 3
container_start_page 734
container_title SIAM journal on mathematical analysis
container_volume 17
creator BARNARD, R. W
FORD, W. T
WANG, H. Y
description Polynomials to be used in interpolation of digital signals are called interpolating polynomials. They may require modification to assure convergence of their reciprocals on the unit circle. This paper concerns discrete time windowing, which consists of scaled truncation of a series such as \[ p_N (z)\mathop = \limits^\Delta 1 + \sum\limits_{m = 1}^\infty {(z^m + z^{ - m} )} {\operatorname { sinc }}\frac{{m\pi }} {N},\quad {\operatorname {sinc }}x\mathop = \limits^\Delta \frac{{\sin x}} {x}, \] where $N > 1$, to obtain an expression of the form $p_{N,L}^ * (z)\mathop = \limits^\Delta z^{L - 1} \left( {1 + \sum\limits_{m = 1}^{L - 1} {\left( {z^m + z^{ - m} } \right)c_m {\operatorname { sinc }}\frac{{m\pi }} {N}} } \right).$ We delete the asterisk to write $P_{N,L} $ when each $c_m = 1$. The zeros of $P_{N,L} $ are shown to have unit modulus for $L \leqq N$. Examples are given to show that little can be said of the zeros of $P_{N,L} $ for $L > N$. Conditions are found to define real sequences of the form, $\{ {c_m :1 \leqq m < \infty } \}$, so that $P_{N,L}^ * $ has no zero of unit modulus. Several standard discrete time windows are shown to define real sequences which are special cases of the conditions developed.
doi_str_mv 10.1137/0517052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924847839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598743571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-dac77f6811894efe1811c77d751c498582844579b0c72ff4416d31650d11808a3</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMoWFfxKxRRPFVnmqRJjrKsf2BhL3oOMU2kS7epSfewfnojWzy9x_CbN8Mj5BrhAZGKR-AogNcnpEBQvBLI2SkpAGhTIUM4JxcpbQGwYQoKcrcZyh8XQyqDL7thcnEMvZm64avM5jCEXWf6dEnOfBZ3NeuCfDyv3pev1Xrz8rZ8WlcWBZ2q1lghfCMRpWLOO8wuT1rB0TIluawlY1yoT7Ci9p4xbFqKDYc2b4A0dEFujrljDN97lya9Dfs45JNa1UwyIanK0P0RsvntFJ3XY-x2Jh40gv6rQM8VZPJ2jjPJmt5HM9gu_eMy_wVM0F93QFcL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924847839</pqid></control><display><type>article</type><title>On zeros of interpolating polynomials</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>BARNARD, R. W ; FORD, W. T ; WANG, H. Y</creator><creatorcontrib>BARNARD, R. W ; FORD, W. T ; WANG, H. Y</creatorcontrib><description>Polynomials to be used in interpolation of digital signals are called interpolating polynomials. They may require modification to assure convergence of their reciprocals on the unit circle. This paper concerns discrete time windowing, which consists of scaled truncation of a series such as \[ p_N (z)\mathop = \limits^\Delta 1 + \sum\limits_{m = 1}^\infty {(z^m + z^{ - m} )} {\operatorname { sinc }}\frac{{m\pi }} {N},\quad {\operatorname {sinc }}x\mathop = \limits^\Delta \frac{{\sin x}} {x}, \] where $N &gt; 1$, to obtain an expression of the form $p_{N,L}^ * (z)\mathop = \limits^\Delta z^{L - 1} \left( {1 + \sum\limits_{m = 1}^{L - 1} {\left( {z^m + z^{ - m} } \right)c_m {\operatorname { sinc }}\frac{{m\pi }} {N}} } \right).$ We delete the asterisk to write $P_{N,L} $ when each $c_m = 1$. The zeros of $P_{N,L} $ are shown to have unit modulus for $L \leqq N$. Examples are given to show that little can be said of the zeros of $P_{N,L} $ for $L &gt; N$. Conditions are found to define real sequences of the form, $\{ {c_m :1 \leqq m &lt; \infty } \}$, so that $P_{N,L}^ * $ has no zero of unit modulus. Several standard discrete time windows are shown to define real sequences which are special cases of the conditions developed.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0517052</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Exact sciences and technology ; Fourier transforms ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Polynomials ; Sciences and techniques of general use ; Sin</subject><ispartof>SIAM journal on mathematical analysis, 1986-05, Vol.17 (3), p.734-744</ispartof><rights>1986 INIST-CNRS</rights><rights>[Copyright] © 1986 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c173t-dac77f6811894efe1811c77d751c498582844579b0c72ff4416d31650d11808a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8751047$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BARNARD, R. W</creatorcontrib><creatorcontrib>FORD, W. T</creatorcontrib><creatorcontrib>WANG, H. Y</creatorcontrib><title>On zeros of interpolating polynomials</title><title>SIAM journal on mathematical analysis</title><description>Polynomials to be used in interpolation of digital signals are called interpolating polynomials. They may require modification to assure convergence of their reciprocals on the unit circle. This paper concerns discrete time windowing, which consists of scaled truncation of a series such as \[ p_N (z)\mathop = \limits^\Delta 1 + \sum\limits_{m = 1}^\infty {(z^m + z^{ - m} )} {\operatorname { sinc }}\frac{{m\pi }} {N},\quad {\operatorname {sinc }}x\mathop = \limits^\Delta \frac{{\sin x}} {x}, \] where $N &gt; 1$, to obtain an expression of the form $p_{N,L}^ * (z)\mathop = \limits^\Delta z^{L - 1} \left( {1 + \sum\limits_{m = 1}^{L - 1} {\left( {z^m + z^{ - m} } \right)c_m {\operatorname { sinc }}\frac{{m\pi }} {N}} } \right).$ We delete the asterisk to write $P_{N,L} $ when each $c_m = 1$. The zeros of $P_{N,L} $ are shown to have unit modulus for $L \leqq N$. Examples are given to show that little can be said of the zeros of $P_{N,L} $ for $L &gt; N$. Conditions are found to define real sequences of the form, $\{ {c_m :1 \leqq m &lt; \infty } \}$, so that $P_{N,L}^ * $ has no zero of unit modulus. Several standard discrete time windows are shown to define real sequences which are special cases of the conditions developed.</description><subject>Applied mathematics</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Sin</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE9LxDAQxYMoWFfxKxRRPFVnmqRJjrKsf2BhL3oOMU2kS7epSfewfnojWzy9x_CbN8Mj5BrhAZGKR-AogNcnpEBQvBLI2SkpAGhTIUM4JxcpbQGwYQoKcrcZyh8XQyqDL7thcnEMvZm64avM5jCEXWf6dEnOfBZ3NeuCfDyv3pev1Xrz8rZ8WlcWBZ2q1lghfCMRpWLOO8wuT1rB0TIluawlY1yoT7Ci9p4xbFqKDYc2b4A0dEFujrljDN97lya9Dfs45JNa1UwyIanK0P0RsvntFJ3XY-x2Jh40gv6rQM8VZPJ2jjPJmt5HM9gu_eMy_wVM0F93QFcL</recordid><startdate>19860501</startdate><enddate>19860501</enddate><creator>BARNARD, R. W</creator><creator>FORD, W. T</creator><creator>WANG, H. Y</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19860501</creationdate><title>On zeros of interpolating polynomials</title><author>BARNARD, R. W ; FORD, W. T ; WANG, H. Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-dac77f6811894efe1811c77d751c498582844579b0c72ff4416d31650d11808a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied mathematics</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Sin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARNARD, R. W</creatorcontrib><creatorcontrib>FORD, W. T</creatorcontrib><creatorcontrib>WANG, H. Y</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARNARD, R. W</au><au>FORD, W. T</au><au>WANG, H. Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On zeros of interpolating polynomials</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1986-05-01</date><risdate>1986</risdate><volume>17</volume><issue>3</issue><spage>734</spage><epage>744</epage><pages>734-744</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>Polynomials to be used in interpolation of digital signals are called interpolating polynomials. They may require modification to assure convergence of their reciprocals on the unit circle. This paper concerns discrete time windowing, which consists of scaled truncation of a series such as \[ p_N (z)\mathop = \limits^\Delta 1 + \sum\limits_{m = 1}^\infty {(z^m + z^{ - m} )} {\operatorname { sinc }}\frac{{m\pi }} {N},\quad {\operatorname {sinc }}x\mathop = \limits^\Delta \frac{{\sin x}} {x}, \] where $N &gt; 1$, to obtain an expression of the form $p_{N,L}^ * (z)\mathop = \limits^\Delta z^{L - 1} \left( {1 + \sum\limits_{m = 1}^{L - 1} {\left( {z^m + z^{ - m} } \right)c_m {\operatorname { sinc }}\frac{{m\pi }} {N}} } \right).$ We delete the asterisk to write $P_{N,L} $ when each $c_m = 1$. The zeros of $P_{N,L} $ are shown to have unit modulus for $L \leqq N$. Examples are given to show that little can be said of the zeros of $P_{N,L} $ for $L &gt; N$. Conditions are found to define real sequences of the form, $\{ {c_m :1 \leqq m &lt; \infty } \}$, so that $P_{N,L}^ * $ has no zero of unit modulus. Several standard discrete time windows are shown to define real sequences which are special cases of the conditions developed.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0517052</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 1986-05, Vol.17 (3), p.734-744
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_924847839
source LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Exact sciences and technology
Fourier transforms
Mathematics
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Polynomials
Sciences and techniques of general use
Sin
title On zeros of interpolating polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20zeros%20of%20interpolating%20polynomials&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=BARNARD,%20R.%20W&rft.date=1986-05-01&rft.volume=17&rft.issue=3&rft.spage=734&rft.epage=744&rft.pages=734-744&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0517052&rft_dat=%3Cproquest_cross%3E2598743571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924847839&rft_id=info:pmid/&rfr_iscdi=true