The Equations of One-Dimensional Unsteady Flame Propagation: Existence and Uniqueness
This paper deals with the mathematical analysis of a system of partial differential equations describing the time-dependent propagation of a planar flame front within the framework of the well-known isobaric approximation of slow combustion. The problem to be investigated takes the form of a nonline...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1988-01, Vol.19 (1), p.32-59 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | SIAM journal on mathematical analysis |
container_volume | 19 |
creator | Larrouturou, B. |
description | This paper deals with the mathematical analysis of a system of partial differential equations describing the time-dependent propagation of a planar flame front within the framework of the well-known isobaric approximation of slow combustion. The problem to be investigated takes the form of a nonlinear mixed initial-boundary value problem in an infinite one-dimensional domain. We show the existence and uniqueness of weak and classical solutions of this problem, depending on the assumptions on the initial data and on the nonlinear temperature dependence of the chemical reaction rates. The crucial point lies in the introduction of a Lagrangian space coordinate, which uncouples the reaction-diffusion equations for the combustion variables from the remaining hydrodynamical subsystem. The analysis then uses some classical arguments of functional analysis, such as the application of the theory of linear semigroups to nonlinear partial differential equations. |
doi_str_mv | 10.1137/0519003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924813703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598671801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-d91350e2ad1fce924d47b1b00b0609c056a7547d2a68c608e125989b466b5be93</originalsourceid><addsrcrecordid>eNotkMFKw0AQhhdRsFbxFRYvnqIzye4m601qqkKhHppz2CQTTUk37W4K9u272p4G_vn4Z_gYu0d4QkzSZ5CoAZILNkHQMkpRiks2CYmKUCBcsxvv1wCohIYJK1Y_xPPd3ozdYD0fWr60FL11G7I-JKbnhfUjmebA573ZEP9yw9Z8_-MvPP_twtLWxI1tAtnt9mTJ-1t21Zre0915Tlkxz1ezj2ixfP-cvS6iOkY5Ro3GRALFpsG2Jh2LRqQVVgAVKNA1SGVSKdImNiqrFWSEsdSZroRSlaxIJ1P2cOrduiGc9mO5HvYufO3L0JYFHZAE6PEE1W7w3lFbbl23Me5QIpR_ysqzsuQIvzJcUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924813703</pqid></control><display><type>article</type><title>The Equations of One-Dimensional Unsteady Flame Propagation: Existence and Uniqueness</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Larrouturou, B.</creator><creatorcontrib>Larrouturou, B.</creatorcontrib><description>This paper deals with the mathematical analysis of a system of partial differential equations describing the time-dependent propagation of a planar flame front within the framework of the well-known isobaric approximation of slow combustion. The problem to be investigated takes the form of a nonlinear mixed initial-boundary value problem in an infinite one-dimensional domain. We show the existence and uniqueness of weak and classical solutions of this problem, depending on the assumptions on the initial data and on the nonlinear temperature dependence of the chemical reaction rates. The crucial point lies in the introduction of a Lagrangian space coordinate, which uncouples the reaction-diffusion equations for the combustion variables from the remaining hydrodynamical subsystem. The analysis then uses some classical arguments of functional analysis, such as the application of the theory of linear semigroups to nonlinear partial differential equations.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0519003</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Boundary value problems ; Chemical reactions ; Heat ; Partial differential equations ; Propagation ; Variables</subject><ispartof>SIAM journal on mathematical analysis, 1988-01, Vol.19 (1), p.32-59</ispartof><rights>[Copyright] © 1988 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c215t-d91350e2ad1fce924d47b1b00b0609c056a7547d2a68c608e125989b466b5be93</citedby><cites>FETCH-LOGICAL-c215t-d91350e2ad1fce924d47b1b00b0609c056a7547d2a68c608e125989b466b5be93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids></links><search><creatorcontrib>Larrouturou, B.</creatorcontrib><title>The Equations of One-Dimensional Unsteady Flame Propagation: Existence and Uniqueness</title><title>SIAM journal on mathematical analysis</title><description>This paper deals with the mathematical analysis of a system of partial differential equations describing the time-dependent propagation of a planar flame front within the framework of the well-known isobaric approximation of slow combustion. The problem to be investigated takes the form of a nonlinear mixed initial-boundary value problem in an infinite one-dimensional domain. We show the existence and uniqueness of weak and classical solutions of this problem, depending on the assumptions on the initial data and on the nonlinear temperature dependence of the chemical reaction rates. The crucial point lies in the introduction of a Lagrangian space coordinate, which uncouples the reaction-diffusion equations for the combustion variables from the remaining hydrodynamical subsystem. The analysis then uses some classical arguments of functional analysis, such as the application of the theory of linear semigroups to nonlinear partial differential equations.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Chemical reactions</subject><subject>Heat</subject><subject>Partial differential equations</subject><subject>Propagation</subject><subject>Variables</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMFKw0AQhhdRsFbxFRYvnqIzye4m601qqkKhHppz2CQTTUk37W4K9u272p4G_vn4Z_gYu0d4QkzSZ5CoAZILNkHQMkpRiks2CYmKUCBcsxvv1wCohIYJK1Y_xPPd3ozdYD0fWr60FL11G7I-JKbnhfUjmebA573ZEP9yw9Z8_-MvPP_twtLWxI1tAtnt9mTJ-1t21Zre0915Tlkxz1ezj2ixfP-cvS6iOkY5Ro3GRALFpsG2Jh2LRqQVVgAVKNA1SGVSKdImNiqrFWSEsdSZroRSlaxIJ1P2cOrduiGc9mO5HvYufO3L0JYFHZAE6PEE1W7w3lFbbl23Me5QIpR_ysqzsuQIvzJcUg</recordid><startdate>198801</startdate><enddate>198801</enddate><creator>Larrouturou, B.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>198801</creationdate><title>The Equations of One-Dimensional Unsteady Flame Propagation: Existence and Uniqueness</title><author>Larrouturou, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-d91350e2ad1fce924d47b1b00b0609c056a7547d2a68c608e125989b466b5be93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Chemical reactions</topic><topic>Heat</topic><topic>Partial differential equations</topic><topic>Propagation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larrouturou, B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larrouturou, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Equations of One-Dimensional Unsteady Flame Propagation: Existence and Uniqueness</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1988-01</date><risdate>1988</risdate><volume>19</volume><issue>1</issue><spage>32</spage><epage>59</epage><pages>32-59</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>This paper deals with the mathematical analysis of a system of partial differential equations describing the time-dependent propagation of a planar flame front within the framework of the well-known isobaric approximation of slow combustion. The problem to be investigated takes the form of a nonlinear mixed initial-boundary value problem in an infinite one-dimensional domain. We show the existence and uniqueness of weak and classical solutions of this problem, depending on the assumptions on the initial data and on the nonlinear temperature dependence of the chemical reaction rates. The crucial point lies in the introduction of a Lagrangian space coordinate, which uncouples the reaction-diffusion equations for the combustion variables from the remaining hydrodynamical subsystem. The analysis then uses some classical arguments of functional analysis, such as the application of the theory of linear semigroups to nonlinear partial differential equations.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0519003</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 1988-01, Vol.19 (1), p.32-59 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_924813703 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Applied mathematics Approximation Boundary value problems Chemical reactions Heat Partial differential equations Propagation Variables |
title | The Equations of One-Dimensional Unsteady Flame Propagation: Existence and Uniqueness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Equations%20of%20One-Dimensional%20Unsteady%20Flame%20Propagation:%20Existence%20and%20Uniqueness&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Larrouturou,%20B.&rft.date=1988-01&rft.volume=19&rft.issue=1&rft.spage=32&rft.epage=59&rft.pages=32-59&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0519003&rft_dat=%3Cproquest_cross%3E2598671801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924813703&rft_id=info:pmid/&rfr_iscdi=true |