Analyticity of Solitary-Wave Solutions of Model Equations for Long Waves

It is shown that solitary-wave solutions of model equations for long waves have an analytic extension to a strip in the complex plane that is symmetric about the real axis. The classes of equations to which the analysis applies include equations of Korteweg-de Vries type, the regularized long-wave e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 1996-05, Vol.27 (3), p.725-737
Hauptverfasser: Li, Yi A., Bona, Jerry L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 737
container_issue 3
container_start_page 725
container_title SIAM journal on mathematical analysis
container_volume 27
creator Li, Yi A.
Bona, Jerry L.
description It is shown that solitary-wave solutions of model equations for long waves have an analytic extension to a strip in the complex plane that is symmetric about the real axis. The classes of equations to which the analysis applies include equations of Korteweg-de Vries type, the regularized long-wave equations, and particular instances of nonlinear Schrodinger equations.
doi_str_mv 10.1137/0527039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924409310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598382871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-3f00a2c7882d11ab605dc8378c2e479710e52b4e8f4500430d2d282c353004473</originalsourceid><addsrcrecordid>eNotkE9Lw0AUxBdRMFbxKwQvnqLv7Z_s5lhKbYWIBxWPYbvZSErMtrsbod_ehPQ0zLwfD2YIuUd4QmTyGQSVwIoLkiAUIpMo-CVJAFieIUe4Jjch7AEw5wUkZLvsdXeKrWnjKXVN-uG6Nmp_yr71n53cEFvXh-n05mrbpevjoOeocT4tXf-TTmi4JVeN7oK9O-uCfL2sP1fbrHzfvK6WZWaogJixBkBTI5WiNaLe5SBqo5hUhlouC4lgBd1xqxouADiDmtZUUcMEGy2XbEEe5r8H746DDbHau8GPJUJVUM6hYAgj9DhDxrsQvG2qg29_x1oVQjWtVJ1XYv8ddlaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924409310</pqid></control><display><type>article</type><title>Analyticity of Solitary-Wave Solutions of Model Equations for Long Waves</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Li, Yi A. ; Bona, Jerry L.</creator><creatorcontrib>Li, Yi A. ; Bona, Jerry L.</creatorcontrib><description>It is shown that solitary-wave solutions of model equations for long waves have an analytic extension to a strip in the complex plane that is symmetric about the real axis. The classes of equations to which the analysis applies include equations of Korteweg-de Vries type, the regularized long-wave equations, and particular instances of nonlinear Schrodinger equations.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/0527039</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Fourier transforms ; Mathematical functions</subject><ispartof>SIAM journal on mathematical analysis, 1996-05, Vol.27 (3), p.725-737</ispartof><rights>[Copyright] © 1996 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-3f00a2c7882d11ab605dc8378c2e479710e52b4e8f4500430d2d282c353004473</citedby><cites>FETCH-LOGICAL-c250t-3f00a2c7882d11ab605dc8378c2e479710e52b4e8f4500430d2d282c353004473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Yi A.</creatorcontrib><creatorcontrib>Bona, Jerry L.</creatorcontrib><title>Analyticity of Solitary-Wave Solutions of Model Equations for Long Waves</title><title>SIAM journal on mathematical analysis</title><description>It is shown that solitary-wave solutions of model equations for long waves have an analytic extension to a strip in the complex plane that is symmetric about the real axis. The classes of equations to which the analysis applies include equations of Korteweg-de Vries type, the regularized long-wave equations, and particular instances of nonlinear Schrodinger equations.</description><subject>Applied mathematics</subject><subject>Fourier transforms</subject><subject>Mathematical functions</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE9Lw0AUxBdRMFbxKwQvnqLv7Z_s5lhKbYWIBxWPYbvZSErMtrsbod_ehPQ0zLwfD2YIuUd4QmTyGQSVwIoLkiAUIpMo-CVJAFieIUe4Jjch7AEw5wUkZLvsdXeKrWnjKXVN-uG6Nmp_yr71n53cEFvXh-n05mrbpevjoOeocT4tXf-TTmi4JVeN7oK9O-uCfL2sP1fbrHzfvK6WZWaogJixBkBTI5WiNaLe5SBqo5hUhlouC4lgBd1xqxouADiDmtZUUcMEGy2XbEEe5r8H746DDbHau8GPJUJVUM6hYAgj9DhDxrsQvG2qg29_x1oVQjWtVJ1XYv8ddlaw</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Li, Yi A.</creator><creator>Bona, Jerry L.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19960501</creationdate><title>Analyticity of Solitary-Wave Solutions of Model Equations for Long Waves</title><author>Li, Yi A. ; Bona, Jerry L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-3f00a2c7882d11ab605dc8378c2e479710e52b4e8f4500430d2d282c353004473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied mathematics</topic><topic>Fourier transforms</topic><topic>Mathematical functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yi A.</creatorcontrib><creatorcontrib>Bona, Jerry L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yi A.</au><au>Bona, Jerry L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyticity of Solitary-Wave Solutions of Model Equations for Long Waves</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1996-05-01</date><risdate>1996</risdate><volume>27</volume><issue>3</issue><spage>725</spage><epage>737</epage><pages>725-737</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>It is shown that solitary-wave solutions of model equations for long waves have an analytic extension to a strip in the complex plane that is symmetric about the real axis. The classes of equations to which the analysis applies include equations of Korteweg-de Vries type, the regularized long-wave equations, and particular instances of nonlinear Schrodinger equations.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0527039</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 1996-05, Vol.27 (3), p.725-737
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_924409310
source LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Fourier transforms
Mathematical functions
title Analyticity of Solitary-Wave Solutions of Model Equations for Long Waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyticity%20of%20Solitary-Wave%20Solutions%20of%20Model%20Equations%20for%20Long%20Waves&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Li,%20Yi%20A.&rft.date=1996-05-01&rft.volume=27&rft.issue=3&rft.spage=725&rft.epage=737&rft.pages=725-737&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/0527039&rft_dat=%3Cproquest_cross%3E2598382871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924409310&rft_id=info:pmid/&rfr_iscdi=true