Global Solvability of the Anharmonic Oscillator Model from Nonlinear Optics
The field equations describing the propagation of electromagnetic waves in a nonlinear dielectric medium whose polarization responds locally to the electric field as an anharmonic oscillator with potential $V(P)$ have smooth solutions global in space and time for arbitrary smooth initial data as soo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 1996-07, Vol.27 (4), p.905-913 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 913 |
---|---|
container_issue | 4 |
container_start_page | 905 |
container_title | SIAM journal on mathematical analysis |
container_volume | 27 |
creator | Joly, J. L. Metivier, G. Rauch, J. |
description | The field equations describing the propagation of electromagnetic waves in a nonlinear dielectric medium whose polarization responds locally to the electric field as an anharmonic oscillator with potential $V(P)$ have smooth solutions global in space and time for arbitrary smooth initial data as soon as $V$ has bounded derivatives of order less than or equal to three. This is true in spite of the fact that solutions of the nonlinear Shrodinger equation which approximate the fields in the slowly varying envelope approximation may blow up in finite time. |
doi_str_mv | 10.1137/S0036141094273672 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_924407521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598382541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ae19b74269dc2f5485a84662ce32439477f60e7fbe352cebd01a945a5e47a40f3</originalsourceid><addsrcrecordid>eNplUEtPAjEYbIwmIvoDvDXeV_v42tIjIQpGlAN63nRLG0rKFtvFhH_vbvDmaTKPzCSD0D0lj5Ry9bQmhEsKlGhgikvFLtCoJ6JSVMAlGg12NfjX6KaUHSFUgiYj9DaPqTERr1P8MU2IoTvh5HG3dXjabk3epzZYvCo2xGi6lPF72riIfU57_JHaGFpnMl4dumDLLbryJhZ394dj9PXy_DlbVMvV_HU2XVaWKdJVxlHdKGBSbyzzAibCTEBKZh1nwDUo5SVxyjeOi15sNoQaDcIIB8oA8XyMHs69h5y-j6509S4dc9tP1poBECUY7UP0HLI5lZKdrw857E0-1ZTUw2X1v8v4LyXjXX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924407521</pqid></control><display><type>article</type><title>Global Solvability of the Anharmonic Oscillator Model from Nonlinear Optics</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Joly, J. L. ; Metivier, G. ; Rauch, J.</creator><creatorcontrib>Joly, J. L. ; Metivier, G. ; Rauch, J.</creatorcontrib><description>The field equations describing the propagation of electromagnetic waves in a nonlinear dielectric medium whose polarization responds locally to the electric field as an anharmonic oscillator with potential $V(P)$ have smooth solutions global in space and time for arbitrary smooth initial data as soon as $V$ has bounded derivatives of order less than or equal to three. This is true in spite of the fact that solutions of the nonlinear Shrodinger equation which approximate the fields in the slowly varying envelope approximation may blow up in finite time.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/S0036141094273672</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Hypotheses ; Ordinary differential equations ; Partial differential equations</subject><ispartof>SIAM journal on mathematical analysis, 1996-07, Vol.27 (4), p.905-913</ispartof><rights>[Copyright] © 1996 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-ae19b74269dc2f5485a84662ce32439477f60e7fbe352cebd01a945a5e47a40f3</citedby><cites>FETCH-LOGICAL-c270t-ae19b74269dc2f5485a84662ce32439477f60e7fbe352cebd01a945a5e47a40f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,27924,27925</link.rule.ids></links><search><creatorcontrib>Joly, J. L.</creatorcontrib><creatorcontrib>Metivier, G.</creatorcontrib><creatorcontrib>Rauch, J.</creatorcontrib><title>Global Solvability of the Anharmonic Oscillator Model from Nonlinear Optics</title><title>SIAM journal on mathematical analysis</title><description>The field equations describing the propagation of electromagnetic waves in a nonlinear dielectric medium whose polarization responds locally to the electric field as an anharmonic oscillator with potential $V(P)$ have smooth solutions global in space and time for arbitrary smooth initial data as soon as $V$ has bounded derivatives of order less than or equal to three. This is true in spite of the fact that solutions of the nonlinear Shrodinger equation which approximate the fields in the slowly varying envelope approximation may blow up in finite time.</description><subject>Approximation</subject><subject>Hypotheses</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUEtPAjEYbIwmIvoDvDXeV_v42tIjIQpGlAN63nRLG0rKFtvFhH_vbvDmaTKPzCSD0D0lj5Ry9bQmhEsKlGhgikvFLtCoJ6JSVMAlGg12NfjX6KaUHSFUgiYj9DaPqTERr1P8MU2IoTvh5HG3dXjabk3epzZYvCo2xGi6lPF72riIfU57_JHaGFpnMl4dumDLLbryJhZ394dj9PXy_DlbVMvV_HU2XVaWKdJVxlHdKGBSbyzzAibCTEBKZh1nwDUo5SVxyjeOi15sNoQaDcIIB8oA8XyMHs69h5y-j6509S4dc9tP1poBECUY7UP0HLI5lZKdrw857E0-1ZTUw2X1v8v4LyXjXX4</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>Joly, J. L.</creator><creator>Metivier, G.</creator><creator>Rauch, J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19960701</creationdate><title>Global Solvability of the Anharmonic Oscillator Model from Nonlinear Optics</title><author>Joly, J. L. ; Metivier, G. ; Rauch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ae19b74269dc2f5485a84662ce32439477f60e7fbe352cebd01a945a5e47a40f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Approximation</topic><topic>Hypotheses</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joly, J. L.</creatorcontrib><creatorcontrib>Metivier, G.</creatorcontrib><creatorcontrib>Rauch, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joly, J. L.</au><au>Metivier, G.</au><au>Rauch, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Solvability of the Anharmonic Oscillator Model from Nonlinear Optics</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>1996-07-01</date><risdate>1996</risdate><volume>27</volume><issue>4</issue><spage>905</spage><epage>913</epage><pages>905-913</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>The field equations describing the propagation of electromagnetic waves in a nonlinear dielectric medium whose polarization responds locally to the electric field as an anharmonic oscillator with potential $V(P)$ have smooth solutions global in space and time for arbitrary smooth initial data as soon as $V$ has bounded derivatives of order less than or equal to three. This is true in spite of the fact that solutions of the nonlinear Shrodinger equation which approximate the fields in the slowly varying envelope approximation may blow up in finite time.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036141094273672</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 1996-07, Vol.27 (4), p.905-913 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_924407521 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Approximation Hypotheses Ordinary differential equations Partial differential equations |
title | Global Solvability of the Anharmonic Oscillator Model from Nonlinear Optics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Solvability%20of%20the%20Anharmonic%20Oscillator%20Model%20from%20Nonlinear%20Optics&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Joly,%20J.%20L.&rft.date=1996-07-01&rft.volume=27&rft.issue=4&rft.spage=905&rft.epage=913&rft.pages=905-913&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/S0036141094273672&rft_dat=%3Cproquest_cross%3E2598382541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924407521&rft_id=info:pmid/&rfr_iscdi=true |