Scattered data interpolation on spheres: Error estimates and locally supported basis functions
Error estimates for scattered data interpolation by "shifts" of a positive definite function for target functions in the associated reproducing kernel Hilbert space (RKHS) have been known for a long time. However, apart from special cases where data is gridded, these estimates do not apply...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2002, Vol.33 (6), p.1393-1410 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1410 |
---|---|
container_issue | 6 |
container_start_page | 1393 |
container_title | SIAM journal on mathematical analysis |
container_volume | 33 |
creator | NARCOWICH, Francis J WARD, Joseph D |
description | Error estimates for scattered data interpolation by "shifts" of a positive definite function for target functions in the associated reproducing kernel Hilbert space (RKHS) have been known for a long time. However, apart from special cases where data is gridded, these estimates do not apply when the target functions generating the data are outside of the associated RKHS, and in fact no estimates were known for such target functions. In this paper, working with the n-sphere as the underlying manifold, we obtain Sobolev-type error estimates for interpolating functions $f\in C^{2k}(S^n)$ from "shifts" of a smoother positive definite function $\phi$ defined on Sn. Moreover, the estimates are close to the optimal approximation order. We also introduce a class of locally supported positive definite functions on Sn, functions based on Wendland's compactly supported radial basis functions (RBFs) [H. Wendland, Adv. Comput. Math., 4 (1995), pp. 389--396], which can be both explicitly and easily computed and also analyzed for convergence properties. |
doi_str_mv | 10.1137/S0036141001395054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923992785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597489361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-791b4311afd31f9d8edcf0fd4e2bb9129cbc870e916a4d8d75ebdb9b1a030abc3</originalsourceid><addsrcrecordid>eNplUE1LAzEQDaJgrf4Ab0HwuJrZZLuNNyn1AwoeqleXfOKWdbNmsof-e7O04EEYGIb35s28R8g1sDsAXt9vGeMLEMAYcFmxSpyQGTBZFTVU4pTMJriY8HNygbjLtIWQbEY-t0al5KKz1KqkaNvnYQidSm3oaS4cvjKKD3QdY4jUYWq_VXJIVW9pF4zquj3FcRhCTFlEK2yR-rE3kwBekjOvOnRXxz4nH0_r99VLsXl7fl09bgrDGUtFLUELDqC85eClXTprPPNWuFJrCaU02ixr5iQslLBLW1dOWy01KMaZ0obPyc1Bd4jhZ8xPNrswxj6fbGTJpSzrZZVJcCCZGBCj880Qs5m4b4A1U4rNvxTzzu1RWGH26qPqTYt_i2LiC8l_AWHWc68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923992785</pqid></control><display><type>article</type><title>Scattered data interpolation on spheres: Error estimates and locally supported basis functions</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>NARCOWICH, Francis J ; WARD, Joseph D</creator><creatorcontrib>NARCOWICH, Francis J ; WARD, Joseph D</creatorcontrib><description>Error estimates for scattered data interpolation by "shifts" of a positive definite function for target functions in the associated reproducing kernel Hilbert space (RKHS) have been known for a long time. However, apart from special cases where data is gridded, these estimates do not apply when the target functions generating the data are outside of the associated RKHS, and in fact no estimates were known for such target functions. In this paper, working with the n-sphere as the underlying manifold, we obtain Sobolev-type error estimates for interpolating functions $f\in C^{2k}(S^n)$ from "shifts" of a smoother positive definite function $\phi$ defined on Sn. Moreover, the estimates are close to the optimal approximation order. We also introduce a class of locally supported positive definite functions on Sn, functions based on Wendland's compactly supported radial basis functions (RBFs) [H. Wendland, Adv. Comput. Math., 4 (1995), pp. 389--396], which can be both explicitly and easily computed and also analyzed for convergence properties.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/S0036141001395054</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Approximations and expansions ; Exact sciences and technology ; Fourier analysis ; Fourier transforms ; Hilbert space ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use ; Spheres</subject><ispartof>SIAM journal on mathematical analysis, 2002, Vol.33 (6), p.1393-1410</ispartof><rights>2003 INIST-CNRS</rights><rights>[Copyright] © 2002 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-791b4311afd31f9d8edcf0fd4e2bb9129cbc870e916a4d8d75ebdb9b1a030abc3</citedby><cites>FETCH-LOGICAL-c300t-791b4311afd31f9d8edcf0fd4e2bb9129cbc870e916a4d8d75ebdb9b1a030abc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14361449$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NARCOWICH, Francis J</creatorcontrib><creatorcontrib>WARD, Joseph D</creatorcontrib><title>Scattered data interpolation on spheres: Error estimates and locally supported basis functions</title><title>SIAM journal on mathematical analysis</title><description>Error estimates for scattered data interpolation by "shifts" of a positive definite function for target functions in the associated reproducing kernel Hilbert space (RKHS) have been known for a long time. However, apart from special cases where data is gridded, these estimates do not apply when the target functions generating the data are outside of the associated RKHS, and in fact no estimates were known for such target functions. In this paper, working with the n-sphere as the underlying manifold, we obtain Sobolev-type error estimates for interpolating functions $f\in C^{2k}(S^n)$ from "shifts" of a smoother positive definite function $\phi$ defined on Sn. Moreover, the estimates are close to the optimal approximation order. We also introduce a class of locally supported positive definite functions on Sn, functions based on Wendland's compactly supported radial basis functions (RBFs) [H. Wendland, Adv. Comput. Math., 4 (1995), pp. 389--396], which can be both explicitly and easily computed and also analyzed for convergence properties.</description><subject>Approximation</subject><subject>Approximations and expansions</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Spheres</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUE1LAzEQDaJgrf4Ab0HwuJrZZLuNNyn1AwoeqleXfOKWdbNmsof-e7O04EEYGIb35s28R8g1sDsAXt9vGeMLEMAYcFmxSpyQGTBZFTVU4pTMJriY8HNygbjLtIWQbEY-t0al5KKz1KqkaNvnYQidSm3oaS4cvjKKD3QdY4jUYWq_VXJIVW9pF4zquj3FcRhCTFlEK2yR-rE3kwBekjOvOnRXxz4nH0_r99VLsXl7fl09bgrDGUtFLUELDqC85eClXTprPPNWuFJrCaU02ixr5iQslLBLW1dOWy01KMaZ0obPyc1Bd4jhZ8xPNrswxj6fbGTJpSzrZZVJcCCZGBCj880Qs5m4b4A1U4rNvxTzzu1RWGH26qPqTYt_i2LiC8l_AWHWc68</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>NARCOWICH, Francis J</creator><creator>WARD, Joseph D</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2002</creationdate><title>Scattered data interpolation on spheres: Error estimates and locally supported basis functions</title><author>NARCOWICH, Francis J ; WARD, Joseph D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-791b4311afd31f9d8edcf0fd4e2bb9129cbc870e916a4d8d75ebdb9b1a030abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Approximation</topic><topic>Approximations and expansions</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Spheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NARCOWICH, Francis J</creatorcontrib><creatorcontrib>WARD, Joseph D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NARCOWICH, Francis J</au><au>WARD, Joseph D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattered data interpolation on spheres: Error estimates and locally supported basis functions</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2002</date><risdate>2002</risdate><volume>33</volume><issue>6</issue><spage>1393</spage><epage>1410</epage><pages>1393-1410</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>Error estimates for scattered data interpolation by "shifts" of a positive definite function for target functions in the associated reproducing kernel Hilbert space (RKHS) have been known for a long time. However, apart from special cases where data is gridded, these estimates do not apply when the target functions generating the data are outside of the associated RKHS, and in fact no estimates were known for such target functions. In this paper, working with the n-sphere as the underlying manifold, we obtain Sobolev-type error estimates for interpolating functions $f\in C^{2k}(S^n)$ from "shifts" of a smoother positive definite function $\phi$ defined on Sn. Moreover, the estimates are close to the optimal approximation order. We also introduce a class of locally supported positive definite functions on Sn, functions based on Wendland's compactly supported radial basis functions (RBFs) [H. Wendland, Adv. Comput. Math., 4 (1995), pp. 389--396], which can be both explicitly and easily computed and also analyzed for convergence properties.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036141001395054</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2002, Vol.33 (6), p.1393-1410 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_923992785 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Approximation Approximations and expansions Exact sciences and technology Fourier analysis Fourier transforms Hilbert space Mathematical analysis Mathematics Sciences and techniques of general use Spheres |
title | Scattered data interpolation on spheres: Error estimates and locally supported basis functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattered%20data%20interpolation%20on%20spheres:%20Error%20estimates%20and%20locally%20supported%20basis%20functions&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=NARCOWICH,%20Francis%20J&rft.date=2002&rft.volume=33&rft.issue=6&rft.spage=1393&rft.epage=1410&rft.pages=1393-1410&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/S0036141001395054&rft_dat=%3Cproquest_cross%3E2597489361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923992785&rft_id=info:pmid/&rfr_iscdi=true |