Droplet spreading under weak slippage: A basic result on finite speed of propagation

We prove a new qualitative result on finite speed of propagation for the thin film equation subjected to Navier slippage or even weaker slip conditions. Our approach works in multiple space dimensions and is based on a novel technique which combines recently established weighted energy estimates wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2003, Vol.34 (4), p.992-1006
1. Verfasser: Grun, Gunther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006
container_issue 4
container_start_page 992
container_title SIAM journal on mathematical analysis
container_volume 34
creator Grun, Gunther
description We prove a new qualitative result on finite speed of propagation for the thin film equation subjected to Navier slippage or even weaker slip conditions. Our approach works in multiple space dimensions and is based on a novel technique which combines recently established weighted energy estimates with a Hardy-type inequality and with Stampacchia's iteration lemma. It can be adapted to degenerate parabolic equations of order different from four as well.
doi_str_mv 10.1137/S0036141002403298
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923980829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597416231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-3b274e977a70cf5d801af756d935175f4b4b79309c056561cdc6116dcdc581e93</originalsourceid><addsrcrecordid>eNplkE1LxDAYhIMouK7-AG9B8Fh93yZpGm_L-gkLHlzPJU2TkrW2NWkR_70tu-DB0xxmnhkYQi4RbhCZvH0DYBlyBEg5sFTlR2SBoEQiUfBjspjtZPZPyVmMOwDMuIIF2d6Hrm_sQGMfrK58W9OxrWyg31Z_0Nj4vte1vaMrWuroDQ02js1Au5Y63_rBTpy1Fe0c7aciXevBd-05OXG6ifbioEvy_viwXT8nm9enl_VqkxgGMCSsTCW3SkotwThR5YDaSZFVigmUwvGSl1IxUAZEJjI0lckQs2pSkaNVbEmu9r3T9tdo41DsujG002ShUqZyyNM5hPuQCV2MwbqiD_5Th58CoZi_K_59NzHXh2IdjW5c0K3x8Q_kKk2nBfYL8-ltGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923980829</pqid></control><display><type>article</type><title>Droplet spreading under weak slippage: A basic result on finite speed of propagation</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Grun, Gunther</creator><creatorcontrib>Grun, Gunther</creatorcontrib><description>We prove a new qualitative result on finite speed of propagation for the thin film equation subjected to Navier slippage or even weaker slip conditions. Our approach works in multiple space dimensions and is based on a novel technique which combines recently established weighted energy estimates with a Hardy-type inequality and with Stampacchia's iteration lemma. It can be adapted to degenerate parabolic equations of order different from four as well.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/S0036141002403298</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Contact angle ; Energy ; Entropy ; Estimates ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Laminar flows ; Low-reynolds-number (creeping) flows ; Mathematical analysis ; Mathematics ; Partial differential equations ; Physics ; Propagation ; Sciences and techniques of general use</subject><ispartof>SIAM journal on mathematical analysis, 2003, Vol.34 (4), p.992-1006</ispartof><rights>2003 INIST-CNRS</rights><rights>[Copyright] © 2003 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-3b274e977a70cf5d801af756d935175f4b4b79309c056561cdc6116dcdc581e93</citedby><cites>FETCH-LOGICAL-c300t-3b274e977a70cf5d801af756d935175f4b4b79309c056561cdc6116dcdc581e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3174,4012,27906,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14922923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grun, Gunther</creatorcontrib><title>Droplet spreading under weak slippage: A basic result on finite speed of propagation</title><title>SIAM journal on mathematical analysis</title><description>We prove a new qualitative result on finite speed of propagation for the thin film equation subjected to Navier slippage or even weaker slip conditions. Our approach works in multiple space dimensions and is based on a novel technique which combines recently established weighted energy estimates with a Hardy-type inequality and with Stampacchia's iteration lemma. It can be adapted to degenerate parabolic equations of order different from four as well.</description><subject>Applied mathematics</subject><subject>Contact angle</subject><subject>Energy</subject><subject>Entropy</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar flows</subject><subject>Low-reynolds-number (creeping) flows</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Propagation</subject><subject>Sciences and techniques of general use</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1LxDAYhIMouK7-AG9B8Fh93yZpGm_L-gkLHlzPJU2TkrW2NWkR_70tu-DB0xxmnhkYQi4RbhCZvH0DYBlyBEg5sFTlR2SBoEQiUfBjspjtZPZPyVmMOwDMuIIF2d6Hrm_sQGMfrK58W9OxrWyg31Z_0Nj4vte1vaMrWuroDQ02js1Au5Y63_rBTpy1Fe0c7aciXevBd-05OXG6ifbioEvy_viwXT8nm9enl_VqkxgGMCSsTCW3SkotwThR5YDaSZFVigmUwvGSl1IxUAZEJjI0lckQs2pSkaNVbEmu9r3T9tdo41DsujG002ShUqZyyNM5hPuQCV2MwbqiD_5Th58CoZi_K_59NzHXh2IdjW5c0K3x8Q_kKk2nBfYL8-ltGA</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Grun, Gunther</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2003</creationdate><title>Droplet spreading under weak slippage: A basic result on finite speed of propagation</title><author>Grun, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-3b274e977a70cf5d801af756d935175f4b4b79309c056561cdc6116dcdc581e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied mathematics</topic><topic>Contact angle</topic><topic>Energy</topic><topic>Entropy</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar flows</topic><topic>Low-reynolds-number (creeping) flows</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Propagation</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grun, Gunther</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grun, Gunther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Droplet spreading under weak slippage: A basic result on finite speed of propagation</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2003</date><risdate>2003</risdate><volume>34</volume><issue>4</issue><spage>992</spage><epage>1006</epage><pages>992-1006</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We prove a new qualitative result on finite speed of propagation for the thin film equation subjected to Navier slippage or even weaker slip conditions. Our approach works in multiple space dimensions and is based on a novel technique which combines recently established weighted energy estimates with a Hardy-type inequality and with Stampacchia's iteration lemma. It can be adapted to degenerate parabolic equations of order different from four as well.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036141002403298</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 2003, Vol.34 (4), p.992-1006
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_923980829
source LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Contact angle
Energy
Entropy
Estimates
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Laminar flows
Low-reynolds-number (creeping) flows
Mathematical analysis
Mathematics
Partial differential equations
Physics
Propagation
Sciences and techniques of general use
title Droplet spreading under weak slippage: A basic result on finite speed of propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Droplet%20spreading%20under%20weak%20slippage:%20A%20basic%20result%20on%20finite%20speed%20of%20propagation&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Grun,%20Gunther&rft.date=2003&rft.volume=34&rft.issue=4&rft.spage=992&rft.epage=1006&rft.pages=992-1006&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/S0036141002403298&rft_dat=%3Cproquest_cross%3E2597416231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923980829&rft_id=info:pmid/&rfr_iscdi=true