Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method
In this paper we study the PML method for Helmholtz-type scattering problems with radially symmetric potential. The PML method consists of surrounding the computational domain with a perfectly matched sponge layer. We prove that the approximate solution obtained by the PML method converges exponenti...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2003-01, Vol.35 (3), p.547-560 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 3 |
container_start_page | 547 |
container_title | SIAM journal on mathematical analysis |
container_volume | 35 |
creator | HOHAGE, Thorsten SCHMIDT, Frank ZSCHIEDRICH, Lin |
description | In this paper we study the PML method for Helmholtz-type scattering problems with radially symmetric potential. The PML method consists of surrounding the computational domain with a perfectly matched sponge layer. We prove that the approximate solution obtained by the PML method converges exponentially fast to the true solution in the computational domain as the thickness of the sponge layer tends to infinity. This is a generalization of results by Lassas and Somersalo based on boundary integral equation techniques. Here we use techniques based on the pole condition instead. This makes it possible to treat problems without an explicitly known fundamental solution. |
doi_str_mv | 10.1137/S0036141002406485 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923976665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597377951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-ecb9f4d138f8f0f3af7ab56cf6738c13d529c5792407ba202a413709489e58e03</originalsourceid><addsrcrecordid>eNplUE1LwzAYDqLgnP4Ab0Hw2Pmm-WjjTYYfg4nC9FzSNFk72mQm3cB_b-sGHjy9h-frfR6ErgnMCKHZ3QqACsIIQMpAsJyfoAkByZOMcHaKJiOcjPg5uohxA0AEkzBB9cq3-8atcd90JqlV6LxrNI5a9b0JI7ANvmxNF3Gpoqmwd7ivDd761mDtXdX0jXczvFjc47l3exPWxmmDvf2lvb8ucWf62leX6MyqNpqr452iz6fHj_lLsnx7XswflommAH1idCktqwjNbW7BUmUzVXKhrchorgmteCo1z-TQMitVCqliQ32QLJeG5wboFN0cfIe_v3Ym9sXG74IbIguZUpkJIfhAIgeSDj7GYGyxDU2nwndBoBj3LP7tOWhuj8ZqWKe1QTndxD8hF5LxTNAfJAZ0GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923976665</pqid></control><display><type>article</type><title>Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>HOHAGE, Thorsten ; SCHMIDT, Frank ; ZSCHIEDRICH, Lin</creator><creatorcontrib>HOHAGE, Thorsten ; SCHMIDT, Frank ; ZSCHIEDRICH, Lin</creatorcontrib><description>In this paper we study the PML method for Helmholtz-type scattering problems with radially symmetric potential. The PML method consists of surrounding the computational domain with a perfectly matched sponge layer. We prove that the approximate solution obtained by the PML method converges exponentially fast to the true solution in the computational domain as the thickness of the sponge layer tends to infinity. This is a generalization of results by Lassas and Somersalo based on boundary integral equation techniques. Here we use techniques based on the pole condition instead. This makes it possible to treat problems without an explicitly known fundamental solution.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/S0036141002406485</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Boundary value problems ; Exact sciences and technology ; Integral equations ; Mathematical analysis ; Mathematics ; Methods ; Sciences and techniques of general use</subject><ispartof>SIAM journal on mathematical analysis, 2003-01, Vol.35 (3), p.547-560</ispartof><rights>2004 INIST-CNRS</rights><rights>[Copyright] © 2003 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-ecb9f4d138f8f0f3af7ab56cf6738c13d529c5792407ba202a413709489e58e03</citedby><cites>FETCH-LOGICAL-c300t-ecb9f4d138f8f0f3af7ab56cf6738c13d529c5792407ba202a413709489e58e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15694576$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HOHAGE, Thorsten</creatorcontrib><creatorcontrib>SCHMIDT, Frank</creatorcontrib><creatorcontrib>ZSCHIEDRICH, Lin</creatorcontrib><title>Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method</title><title>SIAM journal on mathematical analysis</title><description>In this paper we study the PML method for Helmholtz-type scattering problems with radially symmetric potential. The PML method consists of surrounding the computational domain with a perfectly matched sponge layer. We prove that the approximate solution obtained by the PML method converges exponentially fast to the true solution in the computational domain as the thickness of the sponge layer tends to infinity. This is a generalization of results by Lassas and Somersalo based on boundary integral equation techniques. Here we use techniques based on the pole condition instead. This makes it possible to treat problems without an explicitly known fundamental solution.</description><subject>Boundary value problems</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Sciences and techniques of general use</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUE1LwzAYDqLgnP4Ab0Hw2Pmm-WjjTYYfg4nC9FzSNFk72mQm3cB_b-sGHjy9h-frfR6ErgnMCKHZ3QqACsIIQMpAsJyfoAkByZOMcHaKJiOcjPg5uohxA0AEkzBB9cq3-8atcd90JqlV6LxrNI5a9b0JI7ANvmxNF3Gpoqmwd7ivDd761mDtXdX0jXczvFjc47l3exPWxmmDvf2lvb8ucWf62leX6MyqNpqr452iz6fHj_lLsnx7XswflommAH1idCktqwjNbW7BUmUzVXKhrchorgmteCo1z-TQMitVCqliQ32QLJeG5wboFN0cfIe_v3Ym9sXG74IbIguZUpkJIfhAIgeSDj7GYGyxDU2nwndBoBj3LP7tOWhuj8ZqWKe1QTndxD8hF5LxTNAfJAZ0GQ</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>HOHAGE, Thorsten</creator><creator>SCHMIDT, Frank</creator><creator>ZSCHIEDRICH, Lin</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20030101</creationdate><title>Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method</title><author>HOHAGE, Thorsten ; SCHMIDT, Frank ; ZSCHIEDRICH, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-ecb9f4d138f8f0f3af7ab56cf6738c13d529c5792407ba202a413709489e58e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Boundary value problems</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HOHAGE, Thorsten</creatorcontrib><creatorcontrib>SCHMIDT, Frank</creatorcontrib><creatorcontrib>ZSCHIEDRICH, Lin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HOHAGE, Thorsten</au><au>SCHMIDT, Frank</au><au>ZSCHIEDRICH, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>35</volume><issue>3</issue><spage>547</spage><epage>560</epage><pages>547-560</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>In this paper we study the PML method for Helmholtz-type scattering problems with radially symmetric potential. The PML method consists of surrounding the computational domain with a perfectly matched sponge layer. We prove that the approximate solution obtained by the PML method converges exponentially fast to the true solution in the computational domain as the thickness of the sponge layer tends to infinity. This is a generalization of results by Lassas and Somersalo based on boundary integral equation techniques. Here we use techniques based on the pole condition instead. This makes it possible to treat problems without an explicitly known fundamental solution.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036141002406485</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2003-01, Vol.35 (3), p.547-560 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_923976665 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Boundary value problems Exact sciences and technology Integral equations Mathematical analysis Mathematics Methods Sciences and techniques of general use |
title | Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20time-harmonic%20scattering%20problems%20based%20on%20the%20pole%20condition.%20II:%20Convergence%20of%20the%20PML%20method&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=HOHAGE,%20Thorsten&rft.date=2003-01-01&rft.volume=35&rft.issue=3&rft.spage=547&rft.epage=560&rft.pages=547-560&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/S0036141002406485&rft_dat=%3Cproquest_cross%3E2597377951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923976665&rft_id=info:pmid/&rfr_iscdi=true |