Intermediate models in nonlinear optics
In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section,...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2005, Vol.36 (5), p.1664-1688 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1688 |
---|---|
container_issue | 5 |
container_start_page | 1664 |
container_title | SIAM journal on mathematical analysis |
container_volume | 36 |
creator | COLIN, Thierry GALLICE, Gérard LAURIOUX, Karen |
description | In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section, we perform numerical tests in order to investigate the numerical effectivity of the bounds given by the theorem. We compare for a particular nonlinear system the exact solutions and the approximate solutions given by our new model. It is shown that the new models behave as predicted by the theorem but are even better in some cases. |
doi_str_mv | 10.1137/S0036141003423065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923965881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597326391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-c9bf9141b7209ac68687febee11c61e075b44faeecfd64337cc9d548a2fa5d9f3</originalsourceid><addsrcrecordid>eNplkE9Lw0AUxBdRsFY_gLcgiKfoe9l_2aMUq4WCB_UcNpu3kJJu4m568Nub0IIHT3OY-c3AMHaL8IjI9dMHAFcocBJRcFDyjC0QjMw1SnHOFrOdz_4lu0ppB4BKGFiwh00YKe6pae1I2b5vqEtZG7LQh64NZGPWD2Pr0jW78LZLdHPSJftav3yu3vLt--tm9bzNHRdyzJ2pvZlmal2AsU6VqtSeaiJEp5BAy1oIb4mcb5TgXDtnGilKW3grG-P5kt0de4fYfx8ojdWuP8QwTVam4EbJssQphMeQi31KkXw1xHZv40-FUM13VP_umJj7U7FNznY-2uDa9Adq0KCKkv8C6EVeRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923965881</pqid></control><display><type>article</type><title>Intermediate models in nonlinear optics</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>COLIN, Thierry ; GALLICE, Gérard ; LAURIOUX, Karen</creator><creatorcontrib>COLIN, Thierry ; GALLICE, Gérard ; LAURIOUX, Karen</creatorcontrib><description>In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section, we perform numerical tests in order to investigate the numerical effectivity of the bounds given by the theorem. We compare for a particular nonlinear system the exact solutions and the approximate solutions given by our new model. It is shown that the new models behave as predicted by the theorem but are even better in some cases.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/S0036141003423065</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Exact sciences and technology ; Geometrical optics ; Mathematical analysis ; Mathematics ; Partial differential equations ; Propagation ; Sciences and techniques of general use</subject><ispartof>SIAM journal on mathematical analysis, 2005, Vol.36 (5), p.1664-1688</ispartof><rights>2005 INIST-CNRS</rights><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-c9bf9141b7209ac68687febee11c61e075b44faeecfd64337cc9d548a2fa5d9f3</citedby><cites>FETCH-LOGICAL-c345t-c9bf9141b7209ac68687febee11c61e075b44faeecfd64337cc9d548a2fa5d9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17070628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>COLIN, Thierry</creatorcontrib><creatorcontrib>GALLICE, Gérard</creatorcontrib><creatorcontrib>LAURIOUX, Karen</creatorcontrib><title>Intermediate models in nonlinear optics</title><title>SIAM journal on mathematical analysis</title><description>In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section, we perform numerical tests in order to investigate the numerical effectivity of the bounds given by the theorem. We compare for a particular nonlinear system the exact solutions and the approximate solutions given by our new model. It is shown that the new models behave as predicted by the theorem but are even better in some cases.</description><subject>Approximation</subject><subject>Exact sciences and technology</subject><subject>Geometrical optics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Propagation</subject><subject>Sciences and techniques of general use</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9Lw0AUxBdRsFY_gLcgiKfoe9l_2aMUq4WCB_UcNpu3kJJu4m568Nub0IIHT3OY-c3AMHaL8IjI9dMHAFcocBJRcFDyjC0QjMw1SnHOFrOdz_4lu0ppB4BKGFiwh00YKe6pae1I2b5vqEtZG7LQh64NZGPWD2Pr0jW78LZLdHPSJftav3yu3vLt--tm9bzNHRdyzJ2pvZlmal2AsU6VqtSeaiJEp5BAy1oIb4mcb5TgXDtnGilKW3grG-P5kt0de4fYfx8ojdWuP8QwTVam4EbJssQphMeQi31KkXw1xHZv40-FUM13VP_umJj7U7FNznY-2uDa9Adq0KCKkv8C6EVeRQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>COLIN, Thierry</creator><creator>GALLICE, Gérard</creator><creator>LAURIOUX, Karen</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2005</creationdate><title>Intermediate models in nonlinear optics</title><author>COLIN, Thierry ; GALLICE, Gérard ; LAURIOUX, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-c9bf9141b7209ac68687febee11c61e075b44faeecfd64337cc9d548a2fa5d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Exact sciences and technology</topic><topic>Geometrical optics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Propagation</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COLIN, Thierry</creatorcontrib><creatorcontrib>GALLICE, Gérard</creatorcontrib><creatorcontrib>LAURIOUX, Karen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COLIN, Thierry</au><au>GALLICE, Gérard</au><au>LAURIOUX, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermediate models in nonlinear optics</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2005</date><risdate>2005</risdate><volume>36</volume><issue>5</issue><spage>1664</spage><epage>1688</epage><pages>1664-1688</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section, we perform numerical tests in order to investigate the numerical effectivity of the bounds given by the theorem. We compare for a particular nonlinear system the exact solutions and the approximate solutions given by our new model. It is shown that the new models behave as predicted by the theorem but are even better in some cases.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036141003423065</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2005, Vol.36 (5), p.1664-1688 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_923965881 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Approximation Exact sciences and technology Geometrical optics Mathematical analysis Mathematics Partial differential equations Propagation Sciences and techniques of general use |
title | Intermediate models in nonlinear optics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermediate%20models%20in%20nonlinear%20optics&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=COLIN,%20Thierry&rft.date=2005&rft.volume=36&rft.issue=5&rft.spage=1664&rft.epage=1688&rft.pages=1664-1688&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/S0036141003423065&rft_dat=%3Cproquest_cross%3E2597326391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923965881&rft_id=info:pmid/&rfr_iscdi=true |