Intermediate models in nonlinear optics

In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2005, Vol.36 (5), p.1664-1688
Hauptverfasser: COLIN, Thierry, GALLICE, Gérard, LAURIOUX, Karen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1688
container_issue 5
container_start_page 1664
container_title SIAM journal on mathematical analysis
container_volume 36
creator COLIN, Thierry
GALLICE, Gérard
LAURIOUX, Karen
description In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section, we perform numerical tests in order to investigate the numerical effectivity of the bounds given by the theorem. We compare for a particular nonlinear system the exact solutions and the approximate solutions given by our new model. It is shown that the new models behave as predicted by the theorem but are even better in some cases.
doi_str_mv 10.1137/S0036141003423065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923965881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597326391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-c9bf9141b7209ac68687febee11c61e075b44faeecfd64337cc9d548a2fa5d9f3</originalsourceid><addsrcrecordid>eNplkE9Lw0AUxBdRsFY_gLcgiKfoe9l_2aMUq4WCB_UcNpu3kJJu4m568Nub0IIHT3OY-c3AMHaL8IjI9dMHAFcocBJRcFDyjC0QjMw1SnHOFrOdz_4lu0ppB4BKGFiwh00YKe6pae1I2b5vqEtZG7LQh64NZGPWD2Pr0jW78LZLdHPSJftav3yu3vLt--tm9bzNHRdyzJ2pvZlmal2AsU6VqtSeaiJEp5BAy1oIb4mcb5TgXDtnGilKW3grG-P5kt0de4fYfx8ojdWuP8QwTVam4EbJssQphMeQi31KkXw1xHZv40-FUM13VP_umJj7U7FNznY-2uDa9Adq0KCKkv8C6EVeRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923965881</pqid></control><display><type>article</type><title>Intermediate models in nonlinear optics</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>COLIN, Thierry ; GALLICE, Gérard ; LAURIOUX, Karen</creator><creatorcontrib>COLIN, Thierry ; GALLICE, Gérard ; LAURIOUX, Karen</creatorcontrib><description>In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section, we perform numerical tests in order to investigate the numerical effectivity of the bounds given by the theorem. We compare for a particular nonlinear system the exact solutions and the approximate solutions given by our new model. It is shown that the new models behave as predicted by the theorem but are even better in some cases.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/S0036141003423065</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Exact sciences and technology ; Geometrical optics ; Mathematical analysis ; Mathematics ; Partial differential equations ; Propagation ; Sciences and techniques of general use</subject><ispartof>SIAM journal on mathematical analysis, 2005, Vol.36 (5), p.1664-1688</ispartof><rights>2005 INIST-CNRS</rights><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-c9bf9141b7209ac68687febee11c61e075b44faeecfd64337cc9d548a2fa5d9f3</citedby><cites>FETCH-LOGICAL-c345t-c9bf9141b7209ac68687febee11c61e075b44faeecfd64337cc9d548a2fa5d9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17070628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>COLIN, Thierry</creatorcontrib><creatorcontrib>GALLICE, Gérard</creatorcontrib><creatorcontrib>LAURIOUX, Karen</creatorcontrib><title>Intermediate models in nonlinear optics</title><title>SIAM journal on mathematical analysis</title><description>In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section, we perform numerical tests in order to investigate the numerical effectivity of the bounds given by the theorem. We compare for a particular nonlinear system the exact solutions and the approximate solutions given by our new model. It is shown that the new models behave as predicted by the theorem but are even better in some cases.</description><subject>Approximation</subject><subject>Exact sciences and technology</subject><subject>Geometrical optics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Propagation</subject><subject>Sciences and techniques of general use</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9Lw0AUxBdRsFY_gLcgiKfoe9l_2aMUq4WCB_UcNpu3kJJu4m568Nub0IIHT3OY-c3AMHaL8IjI9dMHAFcocBJRcFDyjC0QjMw1SnHOFrOdz_4lu0ppB4BKGFiwh00YKe6pae1I2b5vqEtZG7LQh64NZGPWD2Pr0jW78LZLdHPSJftav3yu3vLt--tm9bzNHRdyzJ2pvZlmal2AsU6VqtSeaiJEp5BAy1oIb4mcb5TgXDtnGilKW3grG-P5kt0de4fYfx8ojdWuP8QwTVam4EbJssQphMeQi31KkXw1xHZv40-FUM13VP_umJj7U7FNznY-2uDa9Adq0KCKkv8C6EVeRQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>COLIN, Thierry</creator><creator>GALLICE, Gérard</creator><creator>LAURIOUX, Karen</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2005</creationdate><title>Intermediate models in nonlinear optics</title><author>COLIN, Thierry ; GALLICE, Gérard ; LAURIOUX, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-c9bf9141b7209ac68687febee11c61e075b44faeecfd64337cc9d548a2fa5d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Approximation</topic><topic>Exact sciences and technology</topic><topic>Geometrical optics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Propagation</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COLIN, Thierry</creatorcontrib><creatorcontrib>GALLICE, Gérard</creatorcontrib><creatorcontrib>LAURIOUX, Karen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COLIN, Thierry</au><au>GALLICE, Gérard</au><au>LAURIOUX, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermediate models in nonlinear optics</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2005</date><risdate>2005</risdate><volume>36</volume><issue>5</issue><spage>1664</spage><epage>1688</epage><pages>1664-1688</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>In this paper, new models are derived for laser propagation in a nonlinear medium. These models are intermediate between nonlinear Maxwell systems and nonlinear Schrodinger equations and are exact in linear cases. We prove rigorous error estimates for a generic class of systems. In the last section, we perform numerical tests in order to investigate the numerical effectivity of the bounds given by the theorem. We compare for a particular nonlinear system the exact solutions and the approximate solutions given by our new model. It is shown that the new models behave as predicted by the theorem but are even better in some cases.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036141003423065</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 2005, Vol.36 (5), p.1664-1688
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_923965881
source LOCUS - SIAM's Online Journal Archive
subjects Approximation
Exact sciences and technology
Geometrical optics
Mathematical analysis
Mathematics
Partial differential equations
Propagation
Sciences and techniques of general use
title Intermediate models in nonlinear optics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermediate%20models%20in%20nonlinear%20optics&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=COLIN,%20Thierry&rft.date=2005&rft.volume=36&rft.issue=5&rft.spage=1664&rft.epage=1688&rft.pages=1664-1688&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/S0036141003423065&rft_dat=%3Cproquest_cross%3E2597326391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923965881&rft_id=info:pmid/&rfr_iscdi=true