Rigorous Upscaling of the Reactive Flow through a Pore, under Dominant Peclet and Damkohler Numbers
In this paper we present a rigorous derivation of the effective model for enhanced diffusion through a narrow and long 2D pore. The analysis uses a singular perturbation technique. The starting point is a local pore scale model describing the transport by convection and diffusion of a reactive solut...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2006-01, Vol.38 (4), p.1262-1287 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1287 |
---|---|
container_issue | 4 |
container_start_page | 1262 |
container_title | SIAM journal on mathematical analysis |
container_volume | 38 |
creator | Mikelić, Andro Devigne, Vincent van Duijn, C. J. |
description | In this paper we present a rigorous derivation of the effective model for enhanced diffusion through a narrow and long 2D pore. The analysis uses a singular perturbation technique. The starting point is a local pore scale model describing the transport by convection and diffusion of a reactive solute. The solute particles undergo a first-order reaction at the pore surface. The transport and reaction parameters are such that we have large, dominant Peclet and Damkohler numbers with respect to the ratio of characteristic transversal and longitudinal lengths (the small parameter ). We give a rigorous mathematical justification of the effective behavior for small . Error estimates are presented in the energy norm as well as in $L^\infty$ and $L^1$ norms of the space variable. They guarantee the validity of the upscaled model. As a special case, we recover the well-known Taylor dispersion formula. |
doi_str_mv | 10.1137/050633573 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923938396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597306001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-56f1be7197bc3a361b5983c61b3260060826e727098aef4f12e39fa119a6fec83</originalsourceid><addsrcrecordid>eNo9kEFLw0AUhBdRsFYP_oPFm2B0X16yyR6ltSoULcWew2b7tk1NsnU3Ufz3RiqeBmY-ZmAYuwRxC4DZnUiFREwzPGIjECqNMkiTYzYSAmUECYhTdhbCTgiQiRIjZpbVxnnXB77aB6Prqt1wZ3m3Jb4kbbrqk_isdl-DM1CbLdd84Tzd8L5dk-dT11Stbju-IFNTx3W75lPdvLttPaQvfVOSD-fsxOo60MWfjtlq9vA2eYrmr4_Pk_t5ZGIFXZRKCyVloLLSoEYJZapyNINiLIWQIo8lZXEmVK7JJhZiQmU1gNLSkslxzK4OvXvvPnoKXbFzvW-HyULFqDBHJQfo-gAZ70LwZIu9rxrtvwsQxe-Fxf-F-APFT2Hx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923938396</pqid></control><display><type>article</type><title>Rigorous Upscaling of the Reactive Flow through a Pore, under Dominant Peclet and Damkohler Numbers</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Mikelić, Andro ; Devigne, Vincent ; van Duijn, C. J.</creator><creatorcontrib>Mikelić, Andro ; Devigne, Vincent ; van Duijn, C. J.</creatorcontrib><description>In this paper we present a rigorous derivation of the effective model for enhanced diffusion through a narrow and long 2D pore. The analysis uses a singular perturbation technique. The starting point is a local pore scale model describing the transport by convection and diffusion of a reactive solute. The solute particles undergo a first-order reaction at the pore surface. The transport and reaction parameters are such that we have large, dominant Peclet and Damkohler numbers with respect to the ratio of characteristic transversal and longitudinal lengths (the small parameter ). We give a rigorous mathematical justification of the effective behavior for small . Error estimates are presented in the energy norm as well as in $L^\infty$ and $L^1$ norms of the space variable. They guarantee the validity of the upscaled model. As a special case, we recover the well-known Taylor dispersion formula.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/050633573</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Chemical reactions ; Chemistry ; Fourier transforms ; Numbers</subject><ispartof>SIAM journal on mathematical analysis, 2006-01, Vol.38 (4), p.1262-1287</ispartof><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-56f1be7197bc3a361b5983c61b3260060826e727098aef4f12e39fa119a6fec83</citedby><cites>FETCH-LOGICAL-c291t-56f1be7197bc3a361b5983c61b3260060826e727098aef4f12e39fa119a6fec83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3183,27923,27924</link.rule.ids></links><search><creatorcontrib>Mikelić, Andro</creatorcontrib><creatorcontrib>Devigne, Vincent</creatorcontrib><creatorcontrib>van Duijn, C. J.</creatorcontrib><title>Rigorous Upscaling of the Reactive Flow through a Pore, under Dominant Peclet and Damkohler Numbers</title><title>SIAM journal on mathematical analysis</title><description>In this paper we present a rigorous derivation of the effective model for enhanced diffusion through a narrow and long 2D pore. The analysis uses a singular perturbation technique. The starting point is a local pore scale model describing the transport by convection and diffusion of a reactive solute. The solute particles undergo a first-order reaction at the pore surface. The transport and reaction parameters are such that we have large, dominant Peclet and Damkohler numbers with respect to the ratio of characteristic transversal and longitudinal lengths (the small parameter ). We give a rigorous mathematical justification of the effective behavior for small . Error estimates are presented in the energy norm as well as in $L^\infty$ and $L^1$ norms of the space variable. They guarantee the validity of the upscaled model. As a special case, we recover the well-known Taylor dispersion formula.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Fourier transforms</subject><subject>Numbers</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEFLw0AUhBdRsFYP_oPFm2B0X16yyR6ltSoULcWew2b7tk1NsnU3Ufz3RiqeBmY-ZmAYuwRxC4DZnUiFREwzPGIjECqNMkiTYzYSAmUECYhTdhbCTgiQiRIjZpbVxnnXB77aB6Prqt1wZ3m3Jb4kbbrqk_isdl-DM1CbLdd84Tzd8L5dk-dT11Stbju-IFNTx3W75lPdvLttPaQvfVOSD-fsxOo60MWfjtlq9vA2eYrmr4_Pk_t5ZGIFXZRKCyVloLLSoEYJZapyNINiLIWQIo8lZXEmVK7JJhZiQmU1gNLSkslxzK4OvXvvPnoKXbFzvW-HyULFqDBHJQfo-gAZ70LwZIu9rxrtvwsQxe-Fxf-F-APFT2Hx</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Mikelić, Andro</creator><creator>Devigne, Vincent</creator><creator>van Duijn, C. J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>200601</creationdate><title>Rigorous Upscaling of the Reactive Flow through a Pore, under Dominant Peclet and Damkohler Numbers</title><author>Mikelić, Andro ; Devigne, Vincent ; van Duijn, C. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-56f1be7197bc3a361b5983c61b3260060826e727098aef4f12e39fa119a6fec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Fourier transforms</topic><topic>Numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikelić, Andro</creatorcontrib><creatorcontrib>Devigne, Vincent</creatorcontrib><creatorcontrib>van Duijn, C. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikelić, Andro</au><au>Devigne, Vincent</au><au>van Duijn, C. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous Upscaling of the Reactive Flow through a Pore, under Dominant Peclet and Damkohler Numbers</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2006-01</date><risdate>2006</risdate><volume>38</volume><issue>4</issue><spage>1262</spage><epage>1287</epage><pages>1262-1287</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>In this paper we present a rigorous derivation of the effective model for enhanced diffusion through a narrow and long 2D pore. The analysis uses a singular perturbation technique. The starting point is a local pore scale model describing the transport by convection and diffusion of a reactive solute. The solute particles undergo a first-order reaction at the pore surface. The transport and reaction parameters are such that we have large, dominant Peclet and Damkohler numbers with respect to the ratio of characteristic transversal and longitudinal lengths (the small parameter ). We give a rigorous mathematical justification of the effective behavior for small . Error estimates are presented in the energy norm as well as in $L^\infty$ and $L^1$ norms of the space variable. They guarantee the validity of the upscaled model. As a special case, we recover the well-known Taylor dispersion formula.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/050633573</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2006-01, Vol.38 (4), p.1262-1287 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_923938396 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Applied mathematics Approximation Chemical reactions Chemistry Fourier transforms Numbers |
title | Rigorous Upscaling of the Reactive Flow through a Pore, under Dominant Peclet and Damkohler Numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20Upscaling%20of%20the%20Reactive%20Flow%20through%20a%20Pore,%20under%20Dominant%20Peclet%20and%20Damkohler%20Numbers&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Mikeli%C4%87,%20Andro&rft.date=2006-01&rft.volume=38&rft.issue=4&rft.spage=1262&rft.epage=1287&rft.pages=1262-1287&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/050633573&rft_dat=%3Cproquest_cross%3E2597306001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923938396&rft_id=info:pmid/&rfr_iscdi=true |