Analysis of an Inverse First Passage Problem from Risk Management

We study the following "inverse first passage time" problem. Given a diffusion process $X_{t}$ and a probability distribution $q$ on $[0,\infty)$, does there exist a boundary $b(t)$ such that $q(t)=\mathbb{P}[\tau\leq t]$, where τ is the first hitting time of $X_{t}$ to the time-dependent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2006-01, Vol.38 (3), p.845-873
Hauptverfasser: Cheng, Lan, Chen, Xinfu, Chadam, John, Saunders, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the following "inverse first passage time" problem. Given a diffusion process $X_{t}$ and a probability distribution $q$ on $[0,\infty)$, does there exist a boundary $b(t)$ such that $q(t)=\mathbb{P}[\tau\leq t]$, where τ is the first hitting time of $X_{t}$ to the time-dependent level $b(t)$? A free boundary problem for a parabolic partial differential operator is associated with the inverse first passage time problem. We prove the existence and uniqueness of a viscosity solution to this problem. We also investigate the small time behavior of the boundary $b(t)$, presenting both upper and lower bounds. Finally, we derive some integral equations characterizing the boundary.
ISSN:0036-1410
1095-7154
DOI:10.1137/050622651