Analysis of an Inverse First Passage Problem from Risk Management
We study the following "inverse first passage time" problem. Given a diffusion process $X_{t}$ and a probability distribution $q$ on $[0,\infty)$, does there exist a boundary $b(t)$ such that $q(t)=\mathbb{P}[\tau\leq t]$, where τ is the first hitting time of $X_{t}$ to the time-dependent...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2006-01, Vol.38 (3), p.845-873 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the following "inverse first passage time" problem. Given a diffusion process $X_{t}$ and a probability distribution $q$ on $[0,\infty)$, does there exist a boundary $b(t)$ such that $q(t)=\mathbb{P}[\tau\leq t]$, where τ is the first hitting time of $X_{t}$ to the time-dependent level $b(t)$? A free boundary problem for a parabolic partial differential operator is associated with the inverse first passage time problem. We prove the existence and uniqueness of a viscosity solution to this problem. We also investigate the small time behavior of the boundary $b(t)$, presenting both upper and lower bounds. Finally, we derive some integral equations characterizing the boundary. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/050622651 |