BOUNDARY BEHAVIOR OF SOLUTIONS OF A CLASS OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS
We study the set of boundary singularities of arbitrary classical solutions of genuinely nonlinear $2\times2$ planar hyperbolic systems of the form $D_kR_k=0$, where $D_k$ denotes differentiation in the direction $e^{i\theta_k(R_1,R_2)}$, $k=1,2$, and where the defining functions $\theta_k$ satisfy...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2008, Vol.40 (4), p.1291-1336 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1336 |
---|---|
container_issue | 4 |
container_start_page | 1291 |
container_title | SIAM journal on mathematical analysis |
container_volume | 40 |
creator | GEVIRTZ, Julian |
description | We study the set of boundary singularities of arbitrary classical solutions of genuinely nonlinear $2\times2$ planar hyperbolic systems of the form $D_kR_k=0$, where $D_k$ denotes differentiation in the direction $e^{i\theta_k(R_1,R_2)}$, $k=1,2$, and where the defining functions $\theta_k$ satisfy (i) $\theta_2=\theta_1+\frac{\pi}{2}$, and (ii) $A\leq|\frac{\partial\theta_k(R)}{\partial R_k}| \leq B$, for all $R\in\mathbb{R}^2$, $k=1,2$, for some positive constants $A,B$. We show that for any system of this kind there is a $\tau |
doi_str_mv | 10.1137/070705507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923909895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597154811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-83e09803d37999e6d144ec62b8fb56a0a864474e2e9c137dbf1962228f745ce23</originalsourceid><addsrcrecordid>eNo9UE1PwkAQ3RhNRPTgP2hMPHio7me3eyy1QJPaNS016alZlm0CQcBdOPjvXYSQOcyb5M17Mw-ARwRfESL8DXJfjEF-BQYIChZyxOg1GEBIohBRBG_BnXMrCFFEBRyAeiSb8j2p2mCUTZOvXFaBHAe1LJpZLsv6OCRBWiT1P5xkZZOXWdEGpSwLj5IqmLafWTWSRZ4GdVvPso_6Htz0au3Mw7kPQTPOZuk0LOQkT5Mi1ASjfRgTA0UMyYJwIYSJFohSoyM8j_s5ixRUcUQppwYbof1ri3mPRIQxjntOmTaYDMHTSXdntz8H4_bdanuwG2_ZCUyEFxfMk15OJG23zlnTdzu7_Fb2t0OwO0bWXSLz3OezoHJarXurNnrpLgsYcRT7C8gfR8NhLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923909895</pqid></control><display><type>article</type><title>BOUNDARY BEHAVIOR OF SOLUTIONS OF A CLASS OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>GEVIRTZ, Julian</creator><creatorcontrib>GEVIRTZ, Julian</creatorcontrib><description>We study the set of boundary singularities of arbitrary classical solutions of genuinely nonlinear $2\times2$ planar hyperbolic systems of the form $D_kR_k=0$, where $D_k$ denotes differentiation in the direction $e^{i\theta_k(R_1,R_2)}$, $k=1,2$, and where the defining functions $\theta_k$ satisfy (i) $\theta_2=\theta_1+\frac{\pi}{2}$, and (ii) $A\leq|\frac{\partial\theta_k(R)}{\partial R_k}| \leq B$, for all $R\in\mathbb{R}^2$, $k=1,2$, for some positive constants $A,B$. We show that for any system of this kind there is a $\tau<1$ such that for any locally Lipschitz solution $R$ in a smoothly bounded domain $G$, the set of points of $\partial G$ at which $R$ fails to have a nontangential limit has Hausdorff dimension at most $\tau$, and, on the other hand, for any such system for which the $\theta_k\in C^\infty(\mathbb{R}^2)$, we construct a $C^\infty$ solution $R$ on a half-plane $\mathbb{H}$ for which the set of points of $\partial\mathbb{H}$ at which $R$ fails to have a nontangential limit has positive Hausdorff dimension. These results are immediately applicable to constant principal strain mappings, which are defined in terms of a system of this kind for which $\theta_1$ is a linear function of $R_1$ and $R_2$.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/070705507</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>SIAM journal on mathematical analysis, 2008, Vol.40 (4), p.1291-1336</ispartof><rights>2009 INIST-CNRS</rights><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-83e09803d37999e6d144ec62b8fb56a0a864474e2e9c137dbf1962228f745ce23</citedby><cites>FETCH-LOGICAL-c321t-83e09803d37999e6d144ec62b8fb56a0a864474e2e9c137dbf1962228f745ce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21718622$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GEVIRTZ, Julian</creatorcontrib><title>BOUNDARY BEHAVIOR OF SOLUTIONS OF A CLASS OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS</title><title>SIAM journal on mathematical analysis</title><description>We study the set of boundary singularities of arbitrary classical solutions of genuinely nonlinear $2\times2$ planar hyperbolic systems of the form $D_kR_k=0$, where $D_k$ denotes differentiation in the direction $e^{i\theta_k(R_1,R_2)}$, $k=1,2$, and where the defining functions $\theta_k$ satisfy (i) $\theta_2=\theta_1+\frac{\pi}{2}$, and (ii) $A\leq|\frac{\partial\theta_k(R)}{\partial R_k}| \leq B$, for all $R\in\mathbb{R}^2$, $k=1,2$, for some positive constants $A,B$. We show that for any system of this kind there is a $\tau<1$ such that for any locally Lipschitz solution $R$ in a smoothly bounded domain $G$, the set of points of $\partial G$ at which $R$ fails to have a nontangential limit has Hausdorff dimension at most $\tau$, and, on the other hand, for any such system for which the $\theta_k\in C^\infty(\mathbb{R}^2)$, we construct a $C^\infty$ solution $R$ on a half-plane $\mathbb{H}$ for which the set of points of $\partial\mathbb{H}$ at which $R$ fails to have a nontangential limit has positive Hausdorff dimension. These results are immediately applicable to constant principal strain mappings, which are defined in terms of a system of this kind for which $\theta_1$ is a linear function of $R_1$ and $R_2$.</description><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UE1PwkAQ3RhNRPTgP2hMPHio7me3eyy1QJPaNS016alZlm0CQcBdOPjvXYSQOcyb5M17Mw-ARwRfESL8DXJfjEF-BQYIChZyxOg1GEBIohBRBG_BnXMrCFFEBRyAeiSb8j2p2mCUTZOvXFaBHAe1LJpZLsv6OCRBWiT1P5xkZZOXWdEGpSwLj5IqmLafWTWSRZ4GdVvPso_6Htz0au3Mw7kPQTPOZuk0LOQkT5Mi1ASjfRgTA0UMyYJwIYSJFohSoyM8j_s5ixRUcUQppwYbof1ri3mPRIQxjntOmTaYDMHTSXdntz8H4_bdanuwG2_ZCUyEFxfMk15OJG23zlnTdzu7_Fb2t0OwO0bWXSLz3OezoHJarXurNnrpLgsYcRT7C8gfR8NhLg</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>GEVIRTZ, Julian</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2008</creationdate><title>BOUNDARY BEHAVIOR OF SOLUTIONS OF A CLASS OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS</title><author>GEVIRTZ, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-83e09803d37999e6d144ec62b8fb56a0a864474e2e9c137dbf1962228f745ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GEVIRTZ, Julian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GEVIRTZ, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BOUNDARY BEHAVIOR OF SOLUTIONS OF A CLASS OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2008</date><risdate>2008</risdate><volume>40</volume><issue>4</issue><spage>1291</spage><epage>1336</epage><pages>1291-1336</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We study the set of boundary singularities of arbitrary classical solutions of genuinely nonlinear $2\times2$ planar hyperbolic systems of the form $D_kR_k=0$, where $D_k$ denotes differentiation in the direction $e^{i\theta_k(R_1,R_2)}$, $k=1,2$, and where the defining functions $\theta_k$ satisfy (i) $\theta_2=\theta_1+\frac{\pi}{2}$, and (ii) $A\leq|\frac{\partial\theta_k(R)}{\partial R_k}| \leq B$, for all $R\in\mathbb{R}^2$, $k=1,2$, for some positive constants $A,B$. We show that for any system of this kind there is a $\tau<1$ such that for any locally Lipschitz solution $R$ in a smoothly bounded domain $G$, the set of points of $\partial G$ at which $R$ fails to have a nontangential limit has Hausdorff dimension at most $\tau$, and, on the other hand, for any such system for which the $\theta_k\in C^\infty(\mathbb{R}^2)$, we construct a $C^\infty$ solution $R$ on a half-plane $\mathbb{H}$ for which the set of points of $\partial\mathbb{H}$ at which $R$ fails to have a nontangential limit has positive Hausdorff dimension. These results are immediately applicable to constant principal strain mappings, which are defined in terms of a system of this kind for which $\theta_1$ is a linear function of $R_1$ and $R_2$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/070705507</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2008, Vol.40 (4), p.1291-1336 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_journals_923909895 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Exact sciences and technology Global analysis, analysis on manifolds Mathematical analysis Mathematics Partial differential equations Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | BOUNDARY BEHAVIOR OF SOLUTIONS OF A CLASS OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BOUNDARY%20BEHAVIOR%20OF%20SOLUTIONS%20OF%20A%20CLASS%20OF%20GENUINELY%20NONLINEAR%20HYPERBOLIC%20SYSTEMS&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=GEVIRTZ,%20Julian&rft.date=2008&rft.volume=40&rft.issue=4&rft.spage=1291&rft.epage=1336&rft.pages=1291-1336&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/070705507&rft_dat=%3Cproquest_cross%3E2597154811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923909895&rft_id=info:pmid/&rfr_iscdi=true |