BOUNDARY BEHAVIOR OF SOLUTIONS OF A CLASS OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS
We study the set of boundary singularities of arbitrary classical solutions of genuinely nonlinear $2\times2$ planar hyperbolic systems of the form $D_kR_k=0$, where $D_k$ denotes differentiation in the direction $e^{i\theta_k(R_1,R_2)}$, $k=1,2$, and where the defining functions $\theta_k$ satisfy...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2008, Vol.40 (4), p.1291-1336 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the set of boundary singularities of arbitrary classical solutions of genuinely nonlinear $2\times2$ planar hyperbolic systems of the form $D_kR_k=0$, where $D_k$ denotes differentiation in the direction $e^{i\theta_k(R_1,R_2)}$, $k=1,2$, and where the defining functions $\theta_k$ satisfy (i) $\theta_2=\theta_1+\frac{\pi}{2}$, and (ii) $A\leq|\frac{\partial\theta_k(R)}{\partial R_k}| \leq B$, for all $R\in\mathbb{R}^2$, $k=1,2$, for some positive constants $A,B$. We show that for any system of this kind there is a $\tau |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/070705507 |