BOUNDARY BEHAVIOR OF SOLUTIONS OF A CLASS OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS

We study the set of boundary singularities of arbitrary classical solutions of genuinely nonlinear $2\times2$ planar hyperbolic systems of the form $D_kR_k=0$, where $D_k$ denotes differentiation in the direction $e^{i\theta_k(R_1,R_2)}$, $k=1,2$, and where the defining functions $\theta_k$ satisfy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2008, Vol.40 (4), p.1291-1336
1. Verfasser: GEVIRTZ, Julian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the set of boundary singularities of arbitrary classical solutions of genuinely nonlinear $2\times2$ planar hyperbolic systems of the form $D_kR_k=0$, where $D_k$ denotes differentiation in the direction $e^{i\theta_k(R_1,R_2)}$, $k=1,2$, and where the defining functions $\theta_k$ satisfy (i) $\theta_2=\theta_1+\frac{\pi}{2}$, and (ii) $A\leq|\frac{\partial\theta_k(R)}{\partial R_k}| \leq B$, for all $R\in\mathbb{R}^2$, $k=1,2$, for some positive constants $A,B$. We show that for any system of this kind there is a $\tau
ISSN:0036-1410
1095-7154
DOI:10.1137/070705507