Inexact Krylov subspace methods for linear systems
There is a class of linear problems for which the computation of the matrix-vector product is very expensive since a time consuming method is necessary to approximate it with some prescribed relative precision. In this paper we investigate the impact of approximately computed matrix-vector products...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2004-01, Vol.26 (1), p.125-153 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 1 |
container_start_page | 125 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 26 |
creator | VAN DEN ESHOF, Jasper SLEIJPEN, Gerard L. G |
description | There is a class of linear problems for which the computation of the matrix-vector product is very expensive since a time consuming method is necessary to approximate it with some prescribed relative precision. In this paper we investigate the impact of approximately computed matrix-vector products on the convergence and attainable accuracy of several Krylov subspace solvers. We will argue that the sensitivity towards perturbations is mainly determined by the underlying way the Krylov subspace is constructed and does not depend on the optimality properties of the particular method. The obtained insight is used to tune the precision of the matrix-vector product in every iteration step in such a way that an overall efficient process is obtained. Our analysis confirms the empirically found relaxation strategy of Bouras and Fraysse for the GMRES method proposed in [A Relaxation Strategy for Inexact Matrix-Vector Products for Krylov Methods, Technical Report TR/PA/00/15, CERFACS, France, 2000]. Furthermore, we give an improved version of a strategy for the conjugate gradient method of Bouras, Fraysse, and Giraud used in [A Relaxation Strategy for Inner-Outer Linear Solvers in Domain Decomposition Methods, Technical Report TR/PA/00/17, CERFACS, France, 2000]. |
doi_str_mv | 10.1137/S0895479802403459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923720225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596288151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-235b8b0c7bd469d2227f411553e7d05982caba62c4db2719b8c7a955e46261a3</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKsfwNsieFzNe0k2m6MUrcWCB3tfkmwWt-yfmrcr9tu7pQUPnuYwM7-BYewW-AOA0I8fPDdKapNzlFxIZc7YDLhRqYYMz9nsYKcH_5JdEW05h0wamDFcdeHH-iF5i_um_05odLSzPiRtGD77kpKqj0lTd8HGhPY0hJau2UVlGwo3J52zzcvzZvGart-Xq8XTOvXT_pCiUC533GtXysyUiKgrCaCUCLrkyuTorbMZelk61GBc7rU1SgWZYQZWzNndEbuL_dcYaCi2_Ri7abEwKDRyRDWF4BjysSeKoSp2sW5t3BfAi8Mxxb9jps79CWzJ26aKtvM1_RUndC6MFL8HX2EN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923720225</pqid></control><display><type>article</type><title>Inexact Krylov subspace methods for linear systems</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>VAN DEN ESHOF, Jasper ; SLEIJPEN, Gerard L. G</creator><creatorcontrib>VAN DEN ESHOF, Jasper ; SLEIJPEN, Gerard L. G</creatorcontrib><description>There is a class of linear problems for which the computation of the matrix-vector product is very expensive since a time consuming method is necessary to approximate it with some prescribed relative precision. In this paper we investigate the impact of approximately computed matrix-vector products on the convergence and attainable accuracy of several Krylov subspace solvers. We will argue that the sensitivity towards perturbations is mainly determined by the underlying way the Krylov subspace is constructed and does not depend on the optimality properties of the particular method. The obtained insight is used to tune the precision of the matrix-vector product in every iteration step in such a way that an overall efficient process is obtained. Our analysis confirms the empirically found relaxation strategy of Bouras and Fraysse for the GMRES method proposed in [A Relaxation Strategy for Inexact Matrix-Vector Products for Krylov Methods, Technical Report TR/PA/00/15, CERFACS, France, 2000]. Furthermore, we give an improved version of a strategy for the conjugate gradient method of Bouras, Fraysse, and Giraud used in [A Relaxation Strategy for Inner-Outer Linear Solvers in Domain Decomposition Methods, Technical Report TR/PA/00/17, CERFACS, France, 2000].</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/S0895479802403459</identifier><identifier>CODEN: SJMAEL</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Applied mathematics ; Approximation ; Error analysis ; Exact sciences and technology ; Linear algebra ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use</subject><ispartof>SIAM journal on matrix analysis and applications, 2004-01, Vol.26 (1), p.125-153</ispartof><rights>2005 INIST-CNRS</rights><rights>[Copyright] © 2004 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-235b8b0c7bd469d2227f411553e7d05982caba62c4db2719b8c7a955e46261a3</citedby><cites>FETCH-LOGICAL-c345t-235b8b0c7bd469d2227f411553e7d05982caba62c4db2719b8c7a955e46261a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17208394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VAN DEN ESHOF, Jasper</creatorcontrib><creatorcontrib>SLEIJPEN, Gerard L. G</creatorcontrib><title>Inexact Krylov subspace methods for linear systems</title><title>SIAM journal on matrix analysis and applications</title><description>There is a class of linear problems for which the computation of the matrix-vector product is very expensive since a time consuming method is necessary to approximate it with some prescribed relative precision. In this paper we investigate the impact of approximately computed matrix-vector products on the convergence and attainable accuracy of several Krylov subspace solvers. We will argue that the sensitivity towards perturbations is mainly determined by the underlying way the Krylov subspace is constructed and does not depend on the optimality properties of the particular method. The obtained insight is used to tune the precision of the matrix-vector product in every iteration step in such a way that an overall efficient process is obtained. Our analysis confirms the empirically found relaxation strategy of Bouras and Fraysse for the GMRES method proposed in [A Relaxation Strategy for Inexact Matrix-Vector Products for Krylov Methods, Technical Report TR/PA/00/15, CERFACS, France, 2000]. Furthermore, we give an improved version of a strategy for the conjugate gradient method of Bouras, Fraysse, and Giraud used in [A Relaxation Strategy for Inner-Outer Linear Solvers in Domain Decomposition Methods, Technical Report TR/PA/00/17, CERFACS, France, 2000].</description><subject>Accuracy</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Linear algebra</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9LAzEUxIMoWKsfwNsieFzNe0k2m6MUrcWCB3tfkmwWt-yfmrcr9tu7pQUPnuYwM7-BYewW-AOA0I8fPDdKapNzlFxIZc7YDLhRqYYMz9nsYKcH_5JdEW05h0wamDFcdeHH-iF5i_um_05odLSzPiRtGD77kpKqj0lTd8HGhPY0hJau2UVlGwo3J52zzcvzZvGart-Xq8XTOvXT_pCiUC533GtXysyUiKgrCaCUCLrkyuTorbMZelk61GBc7rU1SgWZYQZWzNndEbuL_dcYaCi2_Ri7abEwKDRyRDWF4BjysSeKoSp2sW5t3BfAi8Mxxb9jps79CWzJ26aKtvM1_RUndC6MFL8HX2EN</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>VAN DEN ESHOF, Jasper</creator><creator>SLEIJPEN, Gerard L. G</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20040101</creationdate><title>Inexact Krylov subspace methods for linear systems</title><author>VAN DEN ESHOF, Jasper ; SLEIJPEN, Gerard L. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-235b8b0c7bd469d2227f411553e7d05982caba62c4db2719b8c7a955e46261a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Accuracy</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Linear algebra</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VAN DEN ESHOF, Jasper</creatorcontrib><creatorcontrib>SLEIJPEN, Gerard L. G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VAN DEN ESHOF, Jasper</au><au>SLEIJPEN, Gerard L. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inexact Krylov subspace methods for linear systems</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>26</volume><issue>1</issue><spage>125</spage><epage>153</epage><pages>125-153</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><coden>SJMAEL</coden><abstract>There is a class of linear problems for which the computation of the matrix-vector product is very expensive since a time consuming method is necessary to approximate it with some prescribed relative precision. In this paper we investigate the impact of approximately computed matrix-vector products on the convergence and attainable accuracy of several Krylov subspace solvers. We will argue that the sensitivity towards perturbations is mainly determined by the underlying way the Krylov subspace is constructed and does not depend on the optimality properties of the particular method. The obtained insight is used to tune the precision of the matrix-vector product in every iteration step in such a way that an overall efficient process is obtained. Our analysis confirms the empirically found relaxation strategy of Bouras and Fraysse for the GMRES method proposed in [A Relaxation Strategy for Inexact Matrix-Vector Products for Krylov Methods, Technical Report TR/PA/00/15, CERFACS, France, 2000]. Furthermore, we give an improved version of a strategy for the conjugate gradient method of Bouras, Fraysse, and Giraud used in [A Relaxation Strategy for Inner-Outer Linear Solvers in Domain Decomposition Methods, Technical Report TR/PA/00/17, CERFACS, France, 2000].</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0895479802403459</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 2004-01, Vol.26 (1), p.125-153 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_journals_923720225 |
source | SIAM Journals Online; Business Source Complete |
subjects | Accuracy Applied mathematics Approximation Error analysis Exact sciences and technology Linear algebra Mathematics Methods Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Sciences and techniques of general use |
title | Inexact Krylov subspace methods for linear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inexact%20Krylov%20subspace%20methods%20for%20linear%20systems&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=VAN%20DEN%20ESHOF,%20Jasper&rft.date=2004-01-01&rft.volume=26&rft.issue=1&rft.spage=125&rft.epage=153&rft.pages=125-153&rft.issn=0895-4798&rft.eissn=1095-7162&rft.coden=SJMAEL&rft_id=info:doi/10.1137/S0895479802403459&rft_dat=%3Cproquest_cross%3E2596288151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923720225&rft_id=info:pmid/&rfr_iscdi=true |