Computationally efficient approximations of the joint spectral radius

The joint spectral radius of a set of matrices is a measure of the maximal asymptotic growth rate that can be obtained by forming long products of matrices taken from the set. This quantity appears in a number of application contexts but is notoriously difficult to compute and to approximate. We int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on matrix analysis and applications 2005-01, Vol.27 (1), p.256-272
Hauptverfasser: BLONDEL, Vincent D, NESTEROV, Yurii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!