Perturbation Bounds for Determinants and Characteristic Polynomials
We derive absolute perturbation bounds for the coefficients of the characteristic polynomial of a $n\times n$ complex matrix. The bounds consist of elementary symmetric functions of singular values, and suggest that coefficients of normal matrices are better conditioned with regard to absolute pertu...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 2008-01, Vol.30 (2), p.762-776 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 776 |
---|---|
container_issue | 2 |
container_start_page | 762 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 30 |
creator | Ipsen, Ilse C. F. Rehman, Rizwana |
description | We derive absolute perturbation bounds for the coefficients of the characteristic polynomial of a $n\times n$ complex matrix. The bounds consist of elementary symmetric functions of singular values, and suggest that coefficients of normal matrices are better conditioned with regard to absolute perturbations than those of general matrices. When the matrix is Hermitian positive-definite, the bounds can be expressed in terms of the coefficients themselves. We also improve absolute and relative perturbation bounds for determinants. The basis for all bounds is an expansion of the determinant of a perturbed diagonal matrix. |
doi_str_mv | 10.1137/070704770 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923671056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596152231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-490886ed12abb484d426495d20edb772b963c531c2715530cccf30b9633a63003</originalsourceid><addsrcrecordid>eNo9UE1LxDAUDKLgunrwHwRvHqov3-1R6ycsuAc9lzRNMcs2WZP0sP_eLCvyDvMYhplhELomcEcIU_egynGl4AQtCDSiUkTSU7SAuvxcNfU5ukhpA0Akb8gCtWsb8xx7nV3w-DHMfkh4DBE_2Wzj5Lz2OWHtB9x-66hNIV3KzuB12O59mJzepkt0NhawV3-4RF8vz5_tW7X6eH1vH1aVoULmijdQ19IOhOq-5zUfOC0dxEDBDr1StG8kM4IRQxURgoExZmRwYJmWDIAt0c3RdxfDz2xT7jZhjr5Edg1lUhEQsohujyITQ0rRjt0uuknHfUegO0zU_U_EfgE-_1cj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923671056</pqid></control><display><type>article</type><title>Perturbation Bounds for Determinants and Characteristic Polynomials</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>Ipsen, Ilse C. F. ; Rehman, Rizwana</creator><creatorcontrib>Ipsen, Ilse C. F. ; Rehman, Rizwana</creatorcontrib><description>We derive absolute perturbation bounds for the coefficients of the characteristic polynomial of a $n\times n$ complex matrix. The bounds consist of elementary symmetric functions of singular values, and suggest that coefficients of normal matrices are better conditioned with regard to absolute perturbations than those of general matrices. When the matrix is Hermitian positive-definite, the bounds can be expressed in terms of the coefficients themselves. We also improve absolute and relative perturbation bounds for determinants. The basis for all bounds is an expansion of the determinant of a perturbed diagonal matrix.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/070704770</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Eigenvalues ; Matrix ; Polynomials</subject><ispartof>SIAM journal on matrix analysis and applications, 2008-01, Vol.30 (2), p.762-776</ispartof><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-490886ed12abb484d426495d20edb772b963c531c2715530cccf30b9633a63003</citedby><cites>FETCH-LOGICAL-c256t-490886ed12abb484d426495d20edb772b963c531c2715530cccf30b9633a63003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3170,27903,27904</link.rule.ids></links><search><creatorcontrib>Ipsen, Ilse C. F.</creatorcontrib><creatorcontrib>Rehman, Rizwana</creatorcontrib><title>Perturbation Bounds for Determinants and Characteristic Polynomials</title><title>SIAM journal on matrix analysis and applications</title><description>We derive absolute perturbation bounds for the coefficients of the characteristic polynomial of a $n\times n$ complex matrix. The bounds consist of elementary symmetric functions of singular values, and suggest that coefficients of normal matrices are better conditioned with regard to absolute perturbations than those of general matrices. When the matrix is Hermitian positive-definite, the bounds can be expressed in terms of the coefficients themselves. We also improve absolute and relative perturbation bounds for determinants. The basis for all bounds is an expansion of the determinant of a perturbed diagonal matrix.</description><subject>Eigenvalues</subject><subject>Matrix</subject><subject>Polynomials</subject><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UE1LxDAUDKLgunrwHwRvHqov3-1R6ycsuAc9lzRNMcs2WZP0sP_eLCvyDvMYhplhELomcEcIU_egynGl4AQtCDSiUkTSU7SAuvxcNfU5ukhpA0Akb8gCtWsb8xx7nV3w-DHMfkh4DBE_2Wzj5Lz2OWHtB9x-66hNIV3KzuB12O59mJzepkt0NhawV3-4RF8vz5_tW7X6eH1vH1aVoULmijdQ19IOhOq-5zUfOC0dxEDBDr1StG8kM4IRQxURgoExZmRwYJmWDIAt0c3RdxfDz2xT7jZhjr5Edg1lUhEQsohujyITQ0rRjt0uuknHfUegO0zU_U_EfgE-_1cj</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Ipsen, Ilse C. F.</creator><creator>Rehman, Rizwana</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200801</creationdate><title>Perturbation Bounds for Determinants and Characteristic Polynomials</title><author>Ipsen, Ilse C. F. ; Rehman, Rizwana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-490886ed12abb484d426495d20edb772b963c531c2715530cccf30b9633a63003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Eigenvalues</topic><topic>Matrix</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ipsen, Ilse C. F.</creatorcontrib><creatorcontrib>Rehman, Rizwana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ipsen, Ilse C. F.</au><au>Rehman, Rizwana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation Bounds for Determinants and Characteristic Polynomials</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>2008-01</date><risdate>2008</risdate><volume>30</volume><issue>2</issue><spage>762</spage><epage>776</epage><pages>762-776</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>We derive absolute perturbation bounds for the coefficients of the characteristic polynomial of a $n\times n$ complex matrix. The bounds consist of elementary symmetric functions of singular values, and suggest that coefficients of normal matrices are better conditioned with regard to absolute perturbations than those of general matrices. When the matrix is Hermitian positive-definite, the bounds can be expressed in terms of the coefficients themselves. We also improve absolute and relative perturbation bounds for determinants. The basis for all bounds is an expansion of the determinant of a perturbed diagonal matrix.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/070704770</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 2008-01, Vol.30 (2), p.762-776 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_journals_923671056 |
source | SIAM Journals Online; Business Source Complete |
subjects | Eigenvalues Matrix Polynomials |
title | Perturbation Bounds for Determinants and Characteristic Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation%20Bounds%20for%20Determinants%20and%20Characteristic%20Polynomials&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Ipsen,%20Ilse%20C.%20F.&rft.date=2008-01&rft.volume=30&rft.issue=2&rft.spage=762&rft.epage=776&rft.pages=762-776&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/070704770&rft_dat=%3Cproquest_cross%3E2596152231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923671056&rft_id=info:pmid/&rfr_iscdi=true |