Lacunary Polynomial Spline Interpolation

A special form of the Birkhoff interpolation problem is investigated. We prove an existence theorem for certain types of interpolation which, in a particular case, reduces to a theorem of Meir and Sharma for (0, 2) interpolation by C3piecewise quintics. The method of proof enables us to obtain L∞-es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1976-06, Vol.13 (3), p.369-381
1. Verfasser: Demko, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 3
container_start_page 369
container_title SIAM journal on numerical analysis
container_volume 13
creator Demko, Stephen
description A special form of the Birkhoff interpolation problem is investigated. We prove an existence theorem for certain types of interpolation which, in a particular case, reduces to a theorem of Meir and Sharma for (0, 2) interpolation by C3piecewise quintics. The method of proof enables us to obtain L∞-estimates for the error in interpolating smooth functions. These error bounds are shown to be sharp by means of a Baire category argument.
doi_str_mv 10.1137/0713033
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923639668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156305</jstor_id><sourcerecordid>2156305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-2b8a8620a1659963854bb681f3e0f4adfa7f51a2ba65fc3671d8412a180ea3403</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuBFFKxV_AMeihe9RGd2sh85SvGjEFBQz2GS7kJKmo276aH_3kiLp2Hg4R3mFeIa4QGRzCMYJCA6ETOEQmUGDZyKGQDpDHNZnIuLlDYw7RZpJu5LbnY9x_3iI3T7Pmxb7hafQ9f2brHqRxeH0PHYhv5SnHnukrs6zrn4fnn-Wr5l5fvravlUZo00OGaytmy1BEatikKTVXlda4ueHPic156NV8iyZq18Q9rg2uYoGS04phxoLm4PuUMMPzuXxmoTdrGfTlaFJE2F1nZCdwfUxJBSdL4aYrudvqgQqr8WqmMLk7w5yE0aQ_xnEpUmUPQLVo9VsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923639668</pqid></control><display><type>article</type><title>Lacunary Polynomial Spline Interpolation</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Demko, Stephen</creator><creatorcontrib>Demko, Stephen</creatorcontrib><description>A special form of the Birkhoff interpolation problem is investigated. We prove an existence theorem for certain types of interpolation which, in a particular case, reduces to a theorem of Meir and Sharma for (0, 2) interpolation by C3piecewise quintics. The method of proof enables us to obtain L∞-estimates for the error in interpolating smooth functions. These error bounds are shown to be sharp by means of a Baire category argument.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0713033</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Degrees of polynomials ; Error bounds ; Existence theorems ; Integers ; Interpolation ; Mathematical functions ; Polynomials ; Uniqueness</subject><ispartof>SIAM journal on numerical analysis, 1976-06, Vol.13 (3), p.369-381</ispartof><rights>Copyright 1976 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1976 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-2b8a8620a1659963854bb681f3e0f4adfa7f51a2ba65fc3671d8412a180ea3403</citedby><cites>FETCH-LOGICAL-c271t-2b8a8620a1659963854bb681f3e0f4adfa7f51a2ba65fc3671d8412a180ea3403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156305$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156305$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3170,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Demko, Stephen</creatorcontrib><title>Lacunary Polynomial Spline Interpolation</title><title>SIAM journal on numerical analysis</title><description>A special form of the Birkhoff interpolation problem is investigated. We prove an existence theorem for certain types of interpolation which, in a particular case, reduces to a theorem of Meir and Sharma for (0, 2) interpolation by C3piecewise quintics. The method of proof enables us to obtain L∞-estimates for the error in interpolating smooth functions. These error bounds are shown to be sharp by means of a Baire category argument.</description><subject>Approximation</subject><subject>Degrees of polynomials</subject><subject>Error bounds</subject><subject>Existence theorems</subject><subject>Integers</subject><subject>Interpolation</subject><subject>Mathematical functions</subject><subject>Polynomials</subject><subject>Uniqueness</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1Lw0AQBuBFFKxV_AMeihe9RGd2sh85SvGjEFBQz2GS7kJKmo276aH_3kiLp2Hg4R3mFeIa4QGRzCMYJCA6ETOEQmUGDZyKGQDpDHNZnIuLlDYw7RZpJu5LbnY9x_3iI3T7Pmxb7hafQ9f2brHqRxeH0PHYhv5SnHnukrs6zrn4fnn-Wr5l5fvravlUZo00OGaytmy1BEatikKTVXlda4ueHPic156NV8iyZq18Q9rg2uYoGS04phxoLm4PuUMMPzuXxmoTdrGfTlaFJE2F1nZCdwfUxJBSdL4aYrudvqgQqr8WqmMLk7w5yE0aQ_xnEpUmUPQLVo9VsA</recordid><startdate>19760601</startdate><enddate>19760601</enddate><creator>Demko, Stephen</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19760601</creationdate><title>Lacunary Polynomial Spline Interpolation</title><author>Demko, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-2b8a8620a1659963854bb681f3e0f4adfa7f51a2ba65fc3671d8412a180ea3403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Approximation</topic><topic>Degrees of polynomials</topic><topic>Error bounds</topic><topic>Existence theorems</topic><topic>Integers</topic><topic>Interpolation</topic><topic>Mathematical functions</topic><topic>Polynomials</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demko, Stephen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demko, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lacunary Polynomial Spline Interpolation</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1976-06-01</date><risdate>1976</risdate><volume>13</volume><issue>3</issue><spage>369</spage><epage>381</epage><pages>369-381</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>A special form of the Birkhoff interpolation problem is investigated. We prove an existence theorem for certain types of interpolation which, in a particular case, reduces to a theorem of Meir and Sharma for (0, 2) interpolation by C3piecewise quintics. The method of proof enables us to obtain L∞-estimates for the error in interpolating smooth functions. These error bounds are shown to be sharp by means of a Baire category argument.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0713033</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1976-06, Vol.13 (3), p.369-381
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_923639668
source SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Approximation
Degrees of polynomials
Error bounds
Existence theorems
Integers
Interpolation
Mathematical functions
Polynomials
Uniqueness
title Lacunary Polynomial Spline Interpolation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lacunary%20Polynomial%20Spline%20Interpolation&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Demko,%20Stephen&rft.date=1976-06-01&rft.volume=13&rft.issue=3&rft.spage=369&rft.epage=381&rft.pages=369-381&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0713033&rft_dat=%3Cjstor_proqu%3E2156305%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923639668&rft_id=info:pmid/&rft_jstor_id=2156305&rfr_iscdi=true