Cycle Lengths in $A^k b
Let $A$ be a nonnegative, $n \times n$ matrix, and let $b$ be a nonnegative, $n \times n$ vector. Let $S$ be the sequence $\{ A^k b \},k = 0,1,2, \cdots $. Define $m( A,b )$ to be the length of the cycle of zero-nonzero patterns into which $S$ eventually falls. Define $m( A )$ to be the maximum, ove...
Gespeichert in:
Veröffentlicht in: | SIAM journal on matrix analysis and applications 1988-10, Vol.9 (4), p.537-542 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 542 |
---|---|
container_issue | 4 |
container_start_page | 537 |
container_title | SIAM journal on matrix analysis and applications |
container_volume | 9 |
creator | Grinstead, Charles M. |
description | Let $A$ be a nonnegative, $n \times n$ matrix, and let $b$ be a nonnegative, $n \times n$ vector. Let $S$ be the sequence $\{ A^k b \},k = 0,1,2, \cdots $. Define $m( A,b )$ to be the length of the cycle of zero-nonzero patterns into which $S$ eventually falls. Define $m( A )$ to be the maximum, over all nonnegative $b$ of $m( A,b )$. Finally, define $m( n )$ to be the maximum, over all nonnegative, $n \times n$ matrices $A$ of $m( A )$. This paper shows given $A$ and $b$, that $m( A,b )$ is a divisor of a certain number, which is determined by the structure of $A$ and $b$. It is also shown that $\log m ( n ) \sim ( n\log n )^{1/ 2} $. |
doi_str_mv | 10.1137/0609044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923636407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595970921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597-98f412300bff1391e83e9c1b3792df55a75f5d36ca266e38ab12e3cb9ab47b783</originalsourceid><addsrcrecordid>eNotj0tLAzEUhYMoOFZx6XYQwdXovbl5LsvgCwbcdG1I0kRb60ydtIv-eyvt6pzFxzl8jF0jPCCSfgQFFoQ4YRWClY1GxU9ZBWbfhbbmnF2UsgRAJSxW7KbdxVWqu9R_br5Kvejru-nHdx0u2Vn2q5Kujjlhs-enWfvadO8vb-20a6K0urEmC-QEEHJGspgMJRsxkLZ8nqX0WmY5JxU9VyqR8QF5ohisD0IHbWjCbg-z63H43aayccthO_b7R2c5KVIC9B66P0BxHEoZU3brcfHjx51DcP_O7uhMf0MtRJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923636407</pqid></control><display><type>article</type><title>Cycle Lengths in $A^k b</title><source>SIAM Journals Online</source><creator>Grinstead, Charles M.</creator><creatorcontrib>Grinstead, Charles M.</creatorcontrib><description>Let $A$ be a nonnegative, $n \times n$ matrix, and let $b$ be a nonnegative, $n \times n$ vector. Let $S$ be the sequence $\{ A^k b \},k = 0,1,2, \cdots $. Define $m( A,b )$ to be the length of the cycle of zero-nonzero patterns into which $S$ eventually falls. Define $m( A )$ to be the maximum, over all nonnegative $b$ of $m( A,b )$. Finally, define $m( n )$ to be the maximum, over all nonnegative, $n \times n$ matrices $A$ of $m( A )$. This paper shows given $A$ and $b$, that $m( A,b )$ is a divisor of a certain number, which is determined by the structure of $A$ and $b$. It is also shown that $\log m ( n ) \sim ( n\log n )^{1/ 2} $.</description><identifier>ISSN: 0895-4798</identifier><identifier>EISSN: 1095-7162</identifier><identifier>DOI: 10.1137/0609044</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on matrix analysis and applications, 1988-10, Vol.9 (4), p.537-542</ispartof><rights>[Copyright] © 1988 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c597-98f412300bff1391e83e9c1b3792df55a75f5d36ca266e38ab12e3cb9ab47b783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3171,27905,27906</link.rule.ids></links><search><creatorcontrib>Grinstead, Charles M.</creatorcontrib><title>Cycle Lengths in $A^k b</title><title>SIAM journal on matrix analysis and applications</title><description>Let $A$ be a nonnegative, $n \times n$ matrix, and let $b$ be a nonnegative, $n \times n$ vector. Let $S$ be the sequence $\{ A^k b \},k = 0,1,2, \cdots $. Define $m( A,b )$ to be the length of the cycle of zero-nonzero patterns into which $S$ eventually falls. Define $m( A )$ to be the maximum, over all nonnegative $b$ of $m( A,b )$. Finally, define $m( n )$ to be the maximum, over all nonnegative, $n \times n$ matrices $A$ of $m( A )$. This paper shows given $A$ and $b$, that $m( A,b )$ is a divisor of a certain number, which is determined by the structure of $A$ and $b$. It is also shown that $\log m ( n ) \sim ( n\log n )^{1/ 2} $.</description><issn>0895-4798</issn><issn>1095-7162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotj0tLAzEUhYMoOFZx6XYQwdXovbl5LsvgCwbcdG1I0kRb60ydtIv-eyvt6pzFxzl8jF0jPCCSfgQFFoQ4YRWClY1GxU9ZBWbfhbbmnF2UsgRAJSxW7KbdxVWqu9R_br5Kvejru-nHdx0u2Vn2q5Kujjlhs-enWfvadO8vb-20a6K0urEmC-QEEHJGspgMJRsxkLZ8nqX0WmY5JxU9VyqR8QF5ohisD0IHbWjCbg-z63H43aayccthO_b7R2c5KVIC9B66P0BxHEoZU3brcfHjx51DcP_O7uhMf0MtRJc</recordid><startdate>198810</startdate><enddate>198810</enddate><creator>Grinstead, Charles M.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>198810</creationdate><title>Cycle Lengths in $A^k b</title><author>Grinstead, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597-98f412300bff1391e83e9c1b3792df55a75f5d36ca266e38ab12e3cb9ab47b783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinstead, Charles M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on matrix analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinstead, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycle Lengths in $A^k b</atitle><jtitle>SIAM journal on matrix analysis and applications</jtitle><date>1988-10</date><risdate>1988</risdate><volume>9</volume><issue>4</issue><spage>537</spage><epage>542</epage><pages>537-542</pages><issn>0895-4798</issn><eissn>1095-7162</eissn><abstract>Let $A$ be a nonnegative, $n \times n$ matrix, and let $b$ be a nonnegative, $n \times n$ vector. Let $S$ be the sequence $\{ A^k b \},k = 0,1,2, \cdots $. Define $m( A,b )$ to be the length of the cycle of zero-nonzero patterns into which $S$ eventually falls. Define $m( A )$ to be the maximum, over all nonnegative $b$ of $m( A,b )$. Finally, define $m( n )$ to be the maximum, over all nonnegative, $n \times n$ matrices $A$ of $m( A )$. This paper shows given $A$ and $b$, that $m( A,b )$ is a divisor of a certain number, which is determined by the structure of $A$ and $b$. It is also shown that $\log m ( n ) \sim ( n\log n )^{1/ 2} $.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0609044</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4798 |
ispartof | SIAM journal on matrix analysis and applications, 1988-10, Vol.9 (4), p.537-542 |
issn | 0895-4798 1095-7162 |
language | eng |
recordid | cdi_proquest_journals_923636407 |
source | SIAM Journals Online |
title | Cycle Lengths in $A^k b |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycle%20Lengths%20in%20$A%5Ek%20b&rft.jtitle=SIAM%20journal%20on%20matrix%20analysis%20and%20applications&rft.au=Grinstead,%20Charles%20M.&rft.date=1988-10&rft.volume=9&rft.issue=4&rft.spage=537&rft.epage=542&rft.pages=537-542&rft.issn=0895-4798&rft.eissn=1095-7162&rft_id=info:doi/10.1137/0609044&rft_dat=%3Cproquest_cross%3E2595970921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923636407&rft_id=info:pmid/&rfr_iscdi=true |