Orthogonal Polynomials for Nonclassical Weight Functions
In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1979-12, Vol.16 (6), p.999-1006 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1006 |
---|---|
container_issue | 6 |
container_start_page | 999 |
container_title | SIAM journal on numerical analysis |
container_volume | 16 |
creator | Price, Thomas E. |
description | In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and simple method for generating such polynomials. |
doi_str_mv | 10.1137/0716073 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923614640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156651</jstor_id><sourcerecordid>2156651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1180-85e0891fcc913d0f022443317a805dc074c2ecb198289410f3f805bb84521bef3</originalsourceid><addsrcrecordid>eNo90EFLwzAUB_AgCtYpfgEPxYun6ntJ2iRHGU6F4TwoHkubJVtL18ykPezbL9Lh6fH4_3g8_oTcIjwiMvEEAgsQ7IwkCCrPBAo4JwkAKzLkVF2SqxBaiLtElhC58sPWbVxfdemn6w692zVVF1LrfPrhet1VITQ6hj-m2WyHdDH2emhcH67JhY3Q3JzmjHwvXr7mb9ly9fo-f15mGlFCJnMDUqHVWiFbgwVKOWcMRSUhX2sQXFOja1SSSsURLLMxqGvJc4q1sWxG7qe7e-9-RxOGsnWjj--GUlFWIC84RPQwIe1dCN7Ycu-bXeUPJUL510p5aiXKu0m2YXD-n1HMiyJHdgTQ2Fsj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923614640</pqid></control><display><type>article</type><title>Orthogonal Polynomials for Nonclassical Weight Functions</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Price, Thomas E.</creator><creatorcontrib>Price, Thomas E.</creatorcontrib><description>In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and simple method for generating such polynomials.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0716073</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Coefficients ; Degrees of polynomials ; Gaussian quadratures ; Inner products ; Integrands ; Mathematical integrals ; Mathematical moments ; Polynomials ; Recurrence relations ; Weighting functions</subject><ispartof>SIAM journal on numerical analysis, 1979-12, Vol.16 (6), p.999-1006</ispartof><rights>Copyright 1979 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1979 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1180-85e0891fcc913d0f022443317a805dc074c2ecb198289410f3f805bb84521bef3</citedby><cites>FETCH-LOGICAL-c1180-85e0891fcc913d0f022443317a805dc074c2ecb198289410f3f805bb84521bef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156651$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156651$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Price, Thomas E.</creatorcontrib><title>Orthogonal Polynomials for Nonclassical Weight Functions</title><title>SIAM journal on numerical analysis</title><description>In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and simple method for generating such polynomials.</description><subject>Algorithms</subject><subject>Coefficients</subject><subject>Degrees of polynomials</subject><subject>Gaussian quadratures</subject><subject>Inner products</subject><subject>Integrands</subject><subject>Mathematical integrals</subject><subject>Mathematical moments</subject><subject>Polynomials</subject><subject>Recurrence relations</subject><subject>Weighting functions</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90EFLwzAUB_AgCtYpfgEPxYun6ntJ2iRHGU6F4TwoHkubJVtL18ykPezbL9Lh6fH4_3g8_oTcIjwiMvEEAgsQ7IwkCCrPBAo4JwkAKzLkVF2SqxBaiLtElhC58sPWbVxfdemn6w692zVVF1LrfPrhet1VITQ6hj-m2WyHdDH2emhcH67JhY3Q3JzmjHwvXr7mb9ly9fo-f15mGlFCJnMDUqHVWiFbgwVKOWcMRSUhX2sQXFOja1SSSsURLLMxqGvJc4q1sWxG7qe7e-9-RxOGsnWjj--GUlFWIC84RPQwIe1dCN7Ycu-bXeUPJUL510p5aiXKu0m2YXD-n1HMiyJHdgTQ2Fsj</recordid><startdate>19791201</startdate><enddate>19791201</enddate><creator>Price, Thomas E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19791201</creationdate><title>Orthogonal Polynomials for Nonclassical Weight Functions</title><author>Price, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1180-85e0891fcc913d0f022443317a805dc074c2ecb198289410f3f805bb84521bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><topic>Algorithms</topic><topic>Coefficients</topic><topic>Degrees of polynomials</topic><topic>Gaussian quadratures</topic><topic>Inner products</topic><topic>Integrands</topic><topic>Mathematical integrals</topic><topic>Mathematical moments</topic><topic>Polynomials</topic><topic>Recurrence relations</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Price, Thomas E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Polynomials for Nonclassical Weight Functions</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1979-12-01</date><risdate>1979</risdate><volume>16</volume><issue>6</issue><spage>999</spage><epage>1006</epage><pages>999-1006</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and simple method for generating such polynomials.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0716073</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1979-12, Vol.16 (6), p.999-1006 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923614640 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algorithms Coefficients Degrees of polynomials Gaussian quadratures Inner products Integrands Mathematical integrals Mathematical moments Polynomials Recurrence relations Weighting functions |
title | Orthogonal Polynomials for Nonclassical Weight Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Polynomials%20for%20Nonclassical%20Weight%20Functions&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Price,%20Thomas%20E.&rft.date=1979-12-01&rft.volume=16&rft.issue=6&rft.spage=999&rft.epage=1006&rft.pages=999-1006&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0716073&rft_dat=%3Cjstor_proqu%3E2156651%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923614640&rft_id=info:pmid/&rft_jstor_id=2156651&rfr_iscdi=true |