Orthogonal Polynomials for Nonclassical Weight Functions

In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1979-12, Vol.16 (6), p.999-1006
1. Verfasser: Price, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006
container_issue 6
container_start_page 999
container_title SIAM journal on numerical analysis
container_volume 16
creator Price, Thomas E.
description In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and simple method for generating such polynomials.
doi_str_mv 10.1137/0716073
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923614640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156651</jstor_id><sourcerecordid>2156651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1180-85e0891fcc913d0f022443317a805dc074c2ecb198289410f3f805bb84521bef3</originalsourceid><addsrcrecordid>eNo90EFLwzAUB_AgCtYpfgEPxYun6ntJ2iRHGU6F4TwoHkubJVtL18ykPezbL9Lh6fH4_3g8_oTcIjwiMvEEAgsQ7IwkCCrPBAo4JwkAKzLkVF2SqxBaiLtElhC58sPWbVxfdemn6w692zVVF1LrfPrhet1VITQ6hj-m2WyHdDH2emhcH67JhY3Q3JzmjHwvXr7mb9ly9fo-f15mGlFCJnMDUqHVWiFbgwVKOWcMRSUhX2sQXFOja1SSSsURLLMxqGvJc4q1sWxG7qe7e-9-RxOGsnWjj--GUlFWIC84RPQwIe1dCN7Ycu-bXeUPJUL510p5aiXKu0m2YXD-n1HMiyJHdgTQ2Fsj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923614640</pqid></control><display><type>article</type><title>Orthogonal Polynomials for Nonclassical Weight Functions</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Price, Thomas E.</creator><creatorcontrib>Price, Thomas E.</creatorcontrib><description>In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and simple method for generating such polynomials.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0716073</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Coefficients ; Degrees of polynomials ; Gaussian quadratures ; Inner products ; Integrands ; Mathematical integrals ; Mathematical moments ; Polynomials ; Recurrence relations ; Weighting functions</subject><ispartof>SIAM journal on numerical analysis, 1979-12, Vol.16 (6), p.999-1006</ispartof><rights>Copyright 1979 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1979 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1180-85e0891fcc913d0f022443317a805dc074c2ecb198289410f3f805bb84521bef3</citedby><cites>FETCH-LOGICAL-c1180-85e0891fcc913d0f022443317a805dc074c2ecb198289410f3f805bb84521bef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156651$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156651$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Price, Thomas E.</creatorcontrib><title>Orthogonal Polynomials for Nonclassical Weight Functions</title><title>SIAM journal on numerical analysis</title><description>In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and simple method for generating such polynomials.</description><subject>Algorithms</subject><subject>Coefficients</subject><subject>Degrees of polynomials</subject><subject>Gaussian quadratures</subject><subject>Inner products</subject><subject>Integrands</subject><subject>Mathematical integrals</subject><subject>Mathematical moments</subject><subject>Polynomials</subject><subject>Recurrence relations</subject><subject>Weighting functions</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90EFLwzAUB_AgCtYpfgEPxYun6ntJ2iRHGU6F4TwoHkubJVtL18ykPezbL9Lh6fH4_3g8_oTcIjwiMvEEAgsQ7IwkCCrPBAo4JwkAKzLkVF2SqxBaiLtElhC58sPWbVxfdemn6w692zVVF1LrfPrhet1VITQ6hj-m2WyHdDH2emhcH67JhY3Q3JzmjHwvXr7mb9ly9fo-f15mGlFCJnMDUqHVWiFbgwVKOWcMRSUhX2sQXFOja1SSSsURLLMxqGvJc4q1sWxG7qe7e-9-RxOGsnWjj--GUlFWIC84RPQwIe1dCN7Ycu-bXeUPJUL510p5aiXKu0m2YXD-n1HMiyJHdgTQ2Fsj</recordid><startdate>19791201</startdate><enddate>19791201</enddate><creator>Price, Thomas E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19791201</creationdate><title>Orthogonal Polynomials for Nonclassical Weight Functions</title><author>Price, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1180-85e0891fcc913d0f022443317a805dc074c2ecb198289410f3f805bb84521bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><topic>Algorithms</topic><topic>Coefficients</topic><topic>Degrees of polynomials</topic><topic>Gaussian quadratures</topic><topic>Inner products</topic><topic>Integrands</topic><topic>Mathematical integrals</topic><topic>Mathematical moments</topic><topic>Polynomials</topic><topic>Recurrence relations</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Price, Thomas E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Polynomials for Nonclassical Weight Functions</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1979-12-01</date><risdate>1979</risdate><volume>16</volume><issue>6</issue><spage>999</spage><epage>1006</epage><pages>999-1006</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>In this paper we develop a technique for deriving orthogonal polynomials for a class of nonclassical weight functions from known orthogonal polynomials. Although the algorithms discussed here are not as general as the classical and more recently developed algorithms, they do provide an effective and simple method for generating such polynomials.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0716073</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1979-12, Vol.16 (6), p.999-1006
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_923614640
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algorithms
Coefficients
Degrees of polynomials
Gaussian quadratures
Inner products
Integrands
Mathematical integrals
Mathematical moments
Polynomials
Recurrence relations
Weighting functions
title Orthogonal Polynomials for Nonclassical Weight Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Polynomials%20for%20Nonclassical%20Weight%20Functions&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Price,%20Thomas%20E.&rft.date=1979-12-01&rft.volume=16&rft.issue=6&rft.spage=999&rft.epage=1006&rft.pages=999-1006&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0716073&rft_dat=%3Cjstor_proqu%3E2156651%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923614640&rft_id=info:pmid/&rft_jstor_id=2156651&rfr_iscdi=true