Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization

This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1982-04, Vol.19 (2), p.275-311
Hauptverfasser: Heywood, John G., Rannacher, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 2
container_start_page 275
container_title SIAM journal on numerical analysis
container_volume 19
creator Heywood, John G.
Rannacher, Rolf
description This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavior of the approximations, even in the case of large data, so long as the solution remains regular. The analysis is based on sharp a priori estimates for the solution, particularly reflecting its behavior as t → 0 and as t → ∞. It is shown that the regularity customarily assumed in the error analysis for corresponding parabolic problems cannot be realistically assumed in the case of the Navier-Stokes equations, as it depends on nonlocal compatibility conditions for the data. The results which are presented here are independent of such compatibility conditions, which cannot be verified in practice.
doi_str_mv 10.1137/0719018
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923503308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156947</jstor_id><sourcerecordid>2156947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1848-8ac8de1fa69e61625ca612b381ca9c1644cb22fdfb1f94ef7c92e663d44723f23</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmMgXoBDxIVTR5x0aXOcYMAkBIjBucpSBzq6ZiQZYrwMr0rGEBdbtr7fv34TcgxsACCKc1aAYlDukB4wNcwKKNgu6TEmZAY5V_vkIIQ5S3MJoke-r5quiUjHLS6wi3S0XHr32Sx0bFxHnaXxFemd60L83Wi_pnf6o0GfTaN7w0AfvJsl7YBOBvQRX1at9k1cb5RT1642mkB1V9MpGtfV2b2v0dOx9y7VEDdG6YhN03SZHHRLL5tgPMbm69fwkOxZ3QY8-ut98nw1frq4yW7vrycXo9vMQJmXWalNWSNYLRVKkHxotAQ-SxmNVgZknpsZ57a2M7AqR1sYxVFKUed5wYXlok9Ot3dT_PcVhljN3cp3ybJSXAyZEKxM0NkWMt6F4NFWS58S-HUFrNo8v_p7fiJPtuQ8ROf_MQ5DqfJC_ABX04I7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923503308</pqid></control><display><type>article</type><title>Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Heywood, John G. ; Rannacher, Rolf</creator><creatorcontrib>Heywood, John G. ; Rannacher, Rolf</creatorcontrib><description>This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavior of the approximations, even in the case of large data, so long as the solution remains regular. The analysis is based on sharp a priori estimates for the solution, particularly reflecting its behavior as t → 0 and as t → ∞. It is shown that the regularity customarily assumed in the error analysis for corresponding parabolic problems cannot be realistically assumed in the case of the Navier-Stokes equations, as it depends on nonlocal compatibility conditions for the data. The results which are presented here are independent of such compatibility conditions, which cannot be verified in practice.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0719018</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Approximation ; Error analysis ; Error rates ; Estimates ; Finite element method ; Navier Stokes equation ; Navier-Stokes equations ; Ordinary differential equations ; Polygons ; Polyhedrons ; Velocity ; Velocity errors</subject><ispartof>SIAM journal on numerical analysis, 1982-04, Vol.19 (2), p.275-311</ispartof><rights>Copyright 1982 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1982 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1848-8ac8de1fa69e61625ca612b381ca9c1644cb22fdfb1f94ef7c92e663d44723f23</citedby><cites>FETCH-LOGICAL-c1848-8ac8de1fa69e61625ca612b381ca9c1644cb22fdfb1f94ef7c92e663d44723f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156947$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156947$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3182,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Heywood, John G.</creatorcontrib><creatorcontrib>Rannacher, Rolf</creatorcontrib><title>Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization</title><title>SIAM journal on numerical analysis</title><description>This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavior of the approximations, even in the case of large data, so long as the solution remains regular. The analysis is based on sharp a priori estimates for the solution, particularly reflecting its behavior as t → 0 and as t → ∞. It is shown that the regularity customarily assumed in the error analysis for corresponding parabolic problems cannot be realistically assumed in the case of the Navier-Stokes equations, as it depends on nonlocal compatibility conditions for the data. The results which are presented here are independent of such compatibility conditions, which cannot be verified in practice.</description><subject>A priori knowledge</subject><subject>Approximation</subject><subject>Error analysis</subject><subject>Error rates</subject><subject>Estimates</subject><subject>Finite element method</subject><subject>Navier Stokes equation</subject><subject>Navier-Stokes equations</subject><subject>Ordinary differential equations</subject><subject>Polygons</subject><subject>Polyhedrons</subject><subject>Velocity</subject><subject>Velocity errors</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kMFOwzAMhiMEEmMgXoBDxIVTR5x0aXOcYMAkBIjBucpSBzq6ZiQZYrwMr0rGEBdbtr7fv34TcgxsACCKc1aAYlDukB4wNcwKKNgu6TEmZAY5V_vkIIQ5S3MJoke-r5quiUjHLS6wi3S0XHr32Sx0bFxHnaXxFemd60L83Wi_pnf6o0GfTaN7w0AfvJsl7YBOBvQRX1at9k1cb5RT1642mkB1V9MpGtfV2b2v0dOx9y7VEDdG6YhN03SZHHRLL5tgPMbm69fwkOxZ3QY8-ut98nw1frq4yW7vrycXo9vMQJmXWalNWSNYLRVKkHxotAQ-SxmNVgZknpsZ57a2M7AqR1sYxVFKUed5wYXlok9Ot3dT_PcVhljN3cp3ybJSXAyZEKxM0NkWMt6F4NFWS58S-HUFrNo8v_p7fiJPtuQ8ROf_MQ5DqfJC_ABX04I7</recordid><startdate>19820401</startdate><enddate>19820401</enddate><creator>Heywood, John G.</creator><creator>Rannacher, Rolf</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19820401</creationdate><title>Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization</title><author>Heywood, John G. ; Rannacher, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1848-8ac8de1fa69e61625ca612b381ca9c1644cb22fdfb1f94ef7c92e663d44723f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>A priori knowledge</topic><topic>Approximation</topic><topic>Error analysis</topic><topic>Error rates</topic><topic>Estimates</topic><topic>Finite element method</topic><topic>Navier Stokes equation</topic><topic>Navier-Stokes equations</topic><topic>Ordinary differential equations</topic><topic>Polygons</topic><topic>Polyhedrons</topic><topic>Velocity</topic><topic>Velocity errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heywood, John G.</creatorcontrib><creatorcontrib>Rannacher, Rolf</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heywood, John G.</au><au>Rannacher, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1982-04-01</date><risdate>1982</risdate><volume>19</volume><issue>2</issue><spage>275</spage><epage>311</epage><pages>275-311</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavior of the approximations, even in the case of large data, so long as the solution remains regular. The analysis is based on sharp a priori estimates for the solution, particularly reflecting its behavior as t → 0 and as t → ∞. It is shown that the regularity customarily assumed in the error analysis for corresponding parabolic problems cannot be realistically assumed in the case of the Navier-Stokes equations, as it depends on nonlocal compatibility conditions for the data. The results which are presented here are independent of such compatibility conditions, which cannot be verified in practice.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0719018</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1982-04, Vol.19 (2), p.275-311
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_923503308
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects A priori knowledge
Approximation
Error analysis
Error rates
Estimates
Finite element method
Navier Stokes equation
Navier-Stokes equations
Ordinary differential equations
Polygons
Polyhedrons
Velocity
Velocity errors
title Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Approximation%20of%20the%20Nonstationary%20Navier-Stokes%20Problem.%20I.%20Regularity%20of%20Solutions%20and%20Second-Order%20Error%20Estimates%20for%20Spatial%20Discretization&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Heywood,%20John%20G.&rft.date=1982-04-01&rft.volume=19&rft.issue=2&rft.spage=275&rft.epage=311&rft.pages=275-311&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0719018&rft_dat=%3Cjstor_proqu%3E2156947%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923503308&rft_id=info:pmid/&rft_jstor_id=2156947&rfr_iscdi=true