Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization
This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavi...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1982-04, Vol.19 (2), p.275-311 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 2 |
container_start_page | 275 |
container_title | SIAM journal on numerical analysis |
container_volume | 19 |
creator | Heywood, John G. Rannacher, Rolf |
description | This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavior of the approximations, even in the case of large data, so long as the solution remains regular. The analysis is based on sharp a priori estimates for the solution, particularly reflecting its behavior as t → 0 and as t → ∞. It is shown that the regularity customarily assumed in the error analysis for corresponding parabolic problems cannot be realistically assumed in the case of the Navier-Stokes equations, as it depends on nonlocal compatibility conditions for the data. The results which are presented here are independent of such compatibility conditions, which cannot be verified in practice. |
doi_str_mv | 10.1137/0719018 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923503308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156947</jstor_id><sourcerecordid>2156947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1848-8ac8de1fa69e61625ca612b381ca9c1644cb22fdfb1f94ef7c92e663d44723f23</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmMgXoBDxIVTR5x0aXOcYMAkBIjBucpSBzq6ZiQZYrwMr0rGEBdbtr7fv34TcgxsACCKc1aAYlDukB4wNcwKKNgu6TEmZAY5V_vkIIQ5S3MJoke-r5quiUjHLS6wi3S0XHr32Sx0bFxHnaXxFemd60L83Wi_pnf6o0GfTaN7w0AfvJsl7YBOBvQRX1at9k1cb5RT1642mkB1V9MpGtfV2b2v0dOx9y7VEDdG6YhN03SZHHRLL5tgPMbm69fwkOxZ3QY8-ut98nw1frq4yW7vrycXo9vMQJmXWalNWSNYLRVKkHxotAQ-SxmNVgZknpsZ57a2M7AqR1sYxVFKUed5wYXlok9Ot3dT_PcVhljN3cp3ybJSXAyZEKxM0NkWMt6F4NFWS58S-HUFrNo8v_p7fiJPtuQ8ROf_MQ5DqfJC_ABX04I7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923503308</pqid></control><display><type>article</type><title>Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Heywood, John G. ; Rannacher, Rolf</creator><creatorcontrib>Heywood, John G. ; Rannacher, Rolf</creatorcontrib><description>This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavior of the approximations, even in the case of large data, so long as the solution remains regular. The analysis is based on sharp a priori estimates for the solution, particularly reflecting its behavior as t → 0 and as t → ∞. It is shown that the regularity customarily assumed in the error analysis for corresponding parabolic problems cannot be realistically assumed in the case of the Navier-Stokes equations, as it depends on nonlocal compatibility conditions for the data. The results which are presented here are independent of such compatibility conditions, which cannot be verified in practice.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0719018</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Approximation ; Error analysis ; Error rates ; Estimates ; Finite element method ; Navier Stokes equation ; Navier-Stokes equations ; Ordinary differential equations ; Polygons ; Polyhedrons ; Velocity ; Velocity errors</subject><ispartof>SIAM journal on numerical analysis, 1982-04, Vol.19 (2), p.275-311</ispartof><rights>Copyright 1982 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1982 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1848-8ac8de1fa69e61625ca612b381ca9c1644cb22fdfb1f94ef7c92e663d44723f23</citedby><cites>FETCH-LOGICAL-c1848-8ac8de1fa69e61625ca612b381ca9c1644cb22fdfb1f94ef7c92e663d44723f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156947$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156947$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3182,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Heywood, John G.</creatorcontrib><creatorcontrib>Rannacher, Rolf</creatorcontrib><title>Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization</title><title>SIAM journal on numerical analysis</title><description>This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavior of the approximations, even in the case of large data, so long as the solution remains regular. The analysis is based on sharp a priori estimates for the solution, particularly reflecting its behavior as t → 0 and as t → ∞. It is shown that the regularity customarily assumed in the error analysis for corresponding parabolic problems cannot be realistically assumed in the case of the Navier-Stokes equations, as it depends on nonlocal compatibility conditions for the data. The results which are presented here are independent of such compatibility conditions, which cannot be verified in practice.</description><subject>A priori knowledge</subject><subject>Approximation</subject><subject>Error analysis</subject><subject>Error rates</subject><subject>Estimates</subject><subject>Finite element method</subject><subject>Navier Stokes equation</subject><subject>Navier-Stokes equations</subject><subject>Ordinary differential equations</subject><subject>Polygons</subject><subject>Polyhedrons</subject><subject>Velocity</subject><subject>Velocity errors</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kMFOwzAMhiMEEmMgXoBDxIVTR5x0aXOcYMAkBIjBucpSBzq6ZiQZYrwMr0rGEBdbtr7fv34TcgxsACCKc1aAYlDukB4wNcwKKNgu6TEmZAY5V_vkIIQ5S3MJoke-r5quiUjHLS6wi3S0XHr32Sx0bFxHnaXxFemd60L83Wi_pnf6o0GfTaN7w0AfvJsl7YBOBvQRX1at9k1cb5RT1642mkB1V9MpGtfV2b2v0dOx9y7VEDdG6YhN03SZHHRLL5tgPMbm69fwkOxZ3QY8-ut98nw1frq4yW7vrycXo9vMQJmXWalNWSNYLRVKkHxotAQ-SxmNVgZknpsZ57a2M7AqR1sYxVFKUed5wYXlok9Ot3dT_PcVhljN3cp3ybJSXAyZEKxM0NkWMt6F4NFWS58S-HUFrNo8v_p7fiJPtuQ8ROf_MQ5DqfJC_ABX04I7</recordid><startdate>19820401</startdate><enddate>19820401</enddate><creator>Heywood, John G.</creator><creator>Rannacher, Rolf</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19820401</creationdate><title>Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization</title><author>Heywood, John G. ; Rannacher, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1848-8ac8de1fa69e61625ca612b381ca9c1644cb22fdfb1f94ef7c92e663d44723f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>A priori knowledge</topic><topic>Approximation</topic><topic>Error analysis</topic><topic>Error rates</topic><topic>Estimates</topic><topic>Finite element method</topic><topic>Navier Stokes equation</topic><topic>Navier-Stokes equations</topic><topic>Ordinary differential equations</topic><topic>Polygons</topic><topic>Polyhedrons</topic><topic>Velocity</topic><topic>Velocity errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heywood, John G.</creatorcontrib><creatorcontrib>Rannacher, Rolf</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heywood, John G.</au><au>Rannacher, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1982-04-01</date><risdate>1982</risdate><volume>19</volume><issue>2</issue><spage>275</spage><epage>311</epage><pages>275-311</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier-Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavior of the approximations, even in the case of large data, so long as the solution remains regular. The analysis is based on sharp a priori estimates for the solution, particularly reflecting its behavior as t → 0 and as t → ∞. It is shown that the regularity customarily assumed in the error analysis for corresponding parabolic problems cannot be realistically assumed in the case of the Navier-Stokes equations, as it depends on nonlocal compatibility conditions for the data. The results which are presented here are independent of such compatibility conditions, which cannot be verified in practice.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0719018</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1982-04, Vol.19 (2), p.275-311 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923503308 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | A priori knowledge Approximation Error analysis Error rates Estimates Finite element method Navier Stokes equation Navier-Stokes equations Ordinary differential equations Polygons Polyhedrons Velocity Velocity errors |
title | Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Approximation%20of%20the%20Nonstationary%20Navier-Stokes%20Problem.%20I.%20Regularity%20of%20Solutions%20and%20Second-Order%20Error%20Estimates%20for%20Spatial%20Discretization&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Heywood,%20John%20G.&rft.date=1982-04-01&rft.volume=19&rft.issue=2&rft.spage=275&rft.epage=311&rft.pages=275-311&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0719018&rft_dat=%3Cjstor_proqu%3E2156947%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923503308&rft_id=info:pmid/&rft_jstor_id=2156947&rfr_iscdi=true |