Numerical Treatment of Potential Type Equations on $\mathbb{R}^n $: Theoretical Considerations
This article discusses the numerical treatment on $\mathbb{R} ^n (n \geqq 3)$ of the form $\nabla \cdot (A\nabla u) - Pu = f$ where $A$ approaches the identity at infinity and $f$ and $P$ vanish sufficiently rapidly at infinity. In particular, the error introduced by using a finite artificial radius...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1983-02, Vol.20 (1), p.72-85 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 72 |
container_title | SIAM journal on numerical analysis |
container_volume | 20 |
creator | Cantor, Murray |
description | This article discusses the numerical treatment on $\mathbb{R} ^n (n \geqq 3)$ of the form $\nabla \cdot (A\nabla u) - Pu = f$ where $A$ approaches the identity at infinity and $f$ and $P$ vanish sufficiently rapidly at infinity. In particular, the error introduced by using a finite artificial radius is studied when various boundary conditions are used. It is shown that the use of higher order boundary conditions greatly reduces the error introduced by employing an artificial radius. |
doi_str_mv | 10.1137/0720005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_923487025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595119341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c975-97f5563f76a71642152ee3ed60cbb715c9c40911bede83c75f8a4c030b8e4b643</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKf4FYIIPlVvmqRpfZMx_8BQkT7KSpLdso612ZL0YYjf3c7t6dxz-HEuHEKuGdwzxtUDqBQA5AkZMShkopiCUzIC4FnCRFqck4sQVgPBc8ZHZP7et-gbq9e09Khji12krqafLg5Xs493G6TTba9j47pAXUdvv1sdl8b8fP3OB_dIyyU6j_G_ZTJAzQL9Ab8kZ7VeB7w66piUz9Ny8prMPl7eJk-zxBZKJoWqpcx4rTKtWCZSJlNEjosMrDGKSVtYAQVjBheYc6tknWthgYPJUZhM8DG5OdRuvNv2GGK1cr3vho9VkXKRK0jlAN0dIOtdCB7rauObVvtdxaDaT1cdp-N_cHhfuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923487025</pqid></control><display><type>article</type><title>Numerical Treatment of Potential Type Equations on $\mathbb{R}^n $: Theoretical Considerations</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Cantor, Murray</creator><creatorcontrib>Cantor, Murray</creatorcontrib><description>This article discusses the numerical treatment on $\mathbb{R} ^n (n \geqq 3)$ of the form $\nabla \cdot (A\nabla u) - Pu = f$ where $A$ approaches the identity at infinity and $f$ and $P$ vanish sufficiently rapidly at infinity. In particular, the error introduced by using a finite artificial radius is studied when various boundary conditions are used. It is shown that the use of higher order boundary conditions greatly reduces the error introduced by employing an artificial radius.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0720005</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Boundary conditions</subject><ispartof>SIAM journal on numerical analysis, 1983-02, Vol.20 (1), p.72-85</ispartof><rights>[Copyright] © 1983 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c975-97f5563f76a71642152ee3ed60cbb715c9c40911bede83c75f8a4c030b8e4b643</citedby><cites>FETCH-LOGICAL-c975-97f5563f76a71642152ee3ed60cbb715c9c40911bede83c75f8a4c030b8e4b643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Cantor, Murray</creatorcontrib><title>Numerical Treatment of Potential Type Equations on $\mathbb{R}^n $: Theoretical Considerations</title><title>SIAM journal on numerical analysis</title><description>This article discusses the numerical treatment on $\mathbb{R} ^n (n \geqq 3)$ of the form $\nabla \cdot (A\nabla u) - Pu = f$ where $A$ approaches the identity at infinity and $f$ and $P$ vanish sufficiently rapidly at infinity. In particular, the error introduced by using a finite artificial radius is studied when various boundary conditions are used. It is shown that the use of higher order boundary conditions greatly reduces the error introduced by employing an artificial radius.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkF9LwzAUxYMoOKf4FYIIPlVvmqRpfZMx_8BQkT7KSpLdso612ZL0YYjf3c7t6dxz-HEuHEKuGdwzxtUDqBQA5AkZMShkopiCUzIC4FnCRFqck4sQVgPBc8ZHZP7et-gbq9e09Khji12krqafLg5Xs493G6TTba9j47pAXUdvv1sdl8b8fP3OB_dIyyU6j_G_ZTJAzQL9Ab8kZ7VeB7w66piUz9Ny8prMPl7eJk-zxBZKJoWqpcx4rTKtWCZSJlNEjosMrDGKSVtYAQVjBheYc6tknWthgYPJUZhM8DG5OdRuvNv2GGK1cr3vho9VkXKRK0jlAN0dIOtdCB7rauObVvtdxaDaT1cdp-N_cHhfuQ</recordid><startdate>198302</startdate><enddate>198302</enddate><creator>Cantor, Murray</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>198302</creationdate><title>Numerical Treatment of Potential Type Equations on $\mathbb{R}^n $: Theoretical Considerations</title><author>Cantor, Murray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c975-97f5563f76a71642152ee3ed60cbb715c9c40911bede83c75f8a4c030b8e4b643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantor, Murray</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cantor, Murray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Treatment of Potential Type Equations on $\mathbb{R}^n $: Theoretical Considerations</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1983-02</date><risdate>1983</risdate><volume>20</volume><issue>1</issue><spage>72</spage><epage>85</epage><pages>72-85</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>This article discusses the numerical treatment on $\mathbb{R} ^n (n \geqq 3)$ of the form $\nabla \cdot (A\nabla u) - Pu = f$ where $A$ approaches the identity at infinity and $f$ and $P$ vanish sufficiently rapidly at infinity. In particular, the error introduced by using a finite artificial radius is studied when various boundary conditions are used. It is shown that the use of higher order boundary conditions greatly reduces the error introduced by employing an artificial radius.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0720005</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1983-02, Vol.20 (1), p.72-85 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923487025 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Applied mathematics Boundary conditions |
title | Numerical Treatment of Potential Type Equations on $\mathbb{R}^n $: Theoretical Considerations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Treatment%20of%20Potential%20Type%20Equations%20on%20$%5Cmathbb%7BR%7D%5En%20$:%20Theoretical%20Considerations&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Cantor,%20Murray&rft.date=1983-02&rft.volume=20&rft.issue=1&rft.spage=72&rft.epage=85&rft.pages=72-85&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0720005&rft_dat=%3Cproquest_cross%3E2595119341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923487025&rft_id=info:pmid/&rfr_iscdi=true |