Numerical Treatment of Potential Type Equations on $\mathbb{R}^n $: Theoretical Considerations
This article discusses the numerical treatment on $\mathbb{R} ^n (n \geqq 3)$ of the form $\nabla \cdot (A\nabla u) - Pu = f$ where $A$ approaches the identity at infinity and $f$ and $P$ vanish sufficiently rapidly at infinity. In particular, the error introduced by using a finite artificial radius...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1983-02, Vol.20 (1), p.72-85 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article discusses the numerical treatment on $\mathbb{R} ^n (n \geqq 3)$ of the form $\nabla \cdot (A\nabla u) - Pu = f$ where $A$ approaches the identity at infinity and $f$ and $P$ vanish sufficiently rapidly at infinity. In particular, the error introduced by using a finite artificial radius is studied when various boundary conditions are used. It is shown that the use of higher order boundary conditions greatly reduces the error introduced by employing an artificial radius. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/0720005 |