The Use of Defect Correction to Refine the Eigenelements of Compact Integral Operators
We show how the principle of defect correction can be applied to an integral eigenvalue problem. We present as particular cases of this principle the two important methods which are known as the two-level multigrid and iterative refinement.
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1983-12, Vol.20 (6), p.1087-1093 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1093 |
---|---|
container_issue | 6 |
container_start_page | 1087 |
container_title | SIAM journal on numerical analysis |
container_volume | 20 |
creator | Ahués, Mario Chatelin, Françoise |
description | We show how the principle of defect correction can be applied to an integral eigenvalue problem. We present as particular cases of this principle the two important methods which are known as the two-level multigrid and iterative refinement. |
doi_str_mv | 10.1137/0720077 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923450005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2157142</jstor_id><sourcerecordid>2157142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-de510855c4655212f01f385066669c480ddf677f767b8e77ccd0d0cccdba67383</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKf4D_gQRPCpemmapn2UbupgMJDN15Kll9nRNTXJHvzvzdjYvXwc97v7uI-QewYvjHH5CjIFkPKCjBiUIpFMwiUZAfA8YVlaXpMb77cQ-4LxEfle_iBdeaTW0Aka1IFW1rmore1psPQLTdsjDRGbthvsscMd9sEfFiq7G1TcmPUBN051dDGgU8E6f0uujOo83p10TFbv02X1mcwXH7PqbZ5oDhCSBgWDQgid5UKkLDXADC8E5LFKnRXQNCaX0shcrguUUusGGtBR1iqXvOBj8ni8Ozj7u0cf6q3duz5a1mXKMxH_FBF6PkLaWe8dmnpw7U65v5pBfcisPmUWyafTOeW16oxTvW79GS-zEtL84PpwxLY-Pnsep0zIGDH_B_Bicj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923450005</pqid></control><display><type>article</type><title>The Use of Defect Correction to Refine the Eigenelements of Compact Integral Operators</title><source>SIAM Journals Online</source><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Ahués, Mario ; Chatelin, Françoise</creator><creatorcontrib>Ahués, Mario ; Chatelin, Françoise</creatorcontrib><description>We show how the principle of defect correction can be applied to an integral eigenvalue problem. We present as particular cases of this principle the two important methods which are known as the two-level multigrid and iterative refinement.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0720077</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Differential equations ; Eigenvalues ; Exact sciences and technology ; Linear transformations ; Mathematical integrals ; Mathematical vectors ; Mathematics ; Matrices ; Methods ; Multigrid methods ; Neighborhoods ; Numerical analysis ; Numerical analysis in abstract spaces ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Spectral theory</subject><ispartof>SIAM journal on numerical analysis, 1983-12, Vol.20 (6), p.1087-1093</ispartof><rights>Copyright 1983 Society for Industrial and Applied Mathematics</rights><rights>1984 INIST-CNRS</rights><rights>[Copyright] © 1983 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-de510855c4655212f01f385066669c480ddf677f767b8e77ccd0d0cccdba67383</citedby><cites>FETCH-LOGICAL-c300t-de510855c4655212f01f385066669c480ddf677f767b8e77ccd0d0cccdba67383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2157142$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2157142$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9490268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahués, Mario</creatorcontrib><creatorcontrib>Chatelin, Françoise</creatorcontrib><title>The Use of Defect Correction to Refine the Eigenelements of Compact Integral Operators</title><title>SIAM journal on numerical analysis</title><description>We show how the principle of defect correction can be applied to an integral eigenvalue problem. We present as particular cases of this principle the two important methods which are known as the two-level multigrid and iterative refinement.</description><subject>Approximation</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Linear transformations</subject><subject>Mathematical integrals</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Methods</subject><subject>Multigrid methods</subject><subject>Neighborhoods</subject><subject>Numerical analysis</subject><subject>Numerical analysis in abstract spaces</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Spectral theory</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kNFLwzAQxoMoOKf4D_gQRPCpemmapn2UbupgMJDN15Kll9nRNTXJHvzvzdjYvXwc97v7uI-QewYvjHH5CjIFkPKCjBiUIpFMwiUZAfA8YVlaXpMb77cQ-4LxEfle_iBdeaTW0Aka1IFW1rmore1psPQLTdsjDRGbthvsscMd9sEfFiq7G1TcmPUBN051dDGgU8E6f0uujOo83p10TFbv02X1mcwXH7PqbZ5oDhCSBgWDQgid5UKkLDXADC8E5LFKnRXQNCaX0shcrguUUusGGtBR1iqXvOBj8ni8Ozj7u0cf6q3duz5a1mXKMxH_FBF6PkLaWe8dmnpw7U65v5pBfcisPmUWyafTOeW16oxTvW79GS-zEtL84PpwxLY-Pnsep0zIGDH_B_Bicj0</recordid><startdate>19831201</startdate><enddate>19831201</enddate><creator>Ahués, Mario</creator><creator>Chatelin, Françoise</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19831201</creationdate><title>The Use of Defect Correction to Refine the Eigenelements of Compact Integral Operators</title><author>Ahués, Mario ; Chatelin, Françoise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-de510855c4655212f01f385066669c480ddf677f767b8e77ccd0d0cccdba67383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Approximation</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Linear transformations</topic><topic>Mathematical integrals</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Methods</topic><topic>Multigrid methods</topic><topic>Neighborhoods</topic><topic>Numerical analysis</topic><topic>Numerical analysis in abstract spaces</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Spectral theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahués, Mario</creatorcontrib><creatorcontrib>Chatelin, Françoise</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahués, Mario</au><au>Chatelin, Françoise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Defect Correction to Refine the Eigenelements of Compact Integral Operators</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1983-12-01</date><risdate>1983</risdate><volume>20</volume><issue>6</issue><spage>1087</spage><epage>1093</epage><pages>1087-1093</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>We show how the principle of defect correction can be applied to an integral eigenvalue problem. We present as particular cases of this principle the two important methods which are known as the two-level multigrid and iterative refinement.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0720077</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1983-12, Vol.20 (6), p.1087-1093 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923450005 |
source | SIAM Journals Online; Jstor Complete Legacy; JSTOR Mathematics & Statistics |
subjects | Approximation Differential equations Eigenvalues Exact sciences and technology Linear transformations Mathematical integrals Mathematical vectors Mathematics Matrices Methods Multigrid methods Neighborhoods Numerical analysis Numerical analysis in abstract spaces Numerical analysis. Scientific computation Sciences and techniques of general use Spectral theory |
title | The Use of Defect Correction to Refine the Eigenelements of Compact Integral Operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Defect%20Correction%20to%20Refine%20the%20Eigenelements%20of%20Compact%20Integral%20Operators&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Ahu%C3%A9s,%20Mario&rft.date=1983-12-01&rft.volume=20&rft.issue=6&rft.spage=1087&rft.epage=1093&rft.pages=1087-1093&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0720077&rft_dat=%3Cjstor_proqu%3E2157142%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923450005&rft_id=info:pmid/&rft_jstor_id=2157142&rfr_iscdi=true |