A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties
This paper has two aims: to exhibit very general conditions under which members of a broad class of unconstrained minimization algorithms are globally convergent in a strong sense, and to propose several new algorithms that use second derivative information and achieve such convergence. In the first...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1985-02, Vol.22 (1), p.47-67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | SIAM journal on numerical analysis |
container_volume | 22 |
creator | Shultz, Gerald A. Schnabel, Robert B. Byrd, Richard H. |
description | This paper has two aims: to exhibit very general conditions under which members of a broad class of unconstrained minimization algorithms are globally convergent in a strong sense, and to propose several new algorithms that use second derivative information and achieve such convergence. In the first part of the paper we present a general trust-region-based algorithm schema that includes an undefined step selection strategy. We give general conditions on this step selection strategy under which limit points of the algorithm will satisfy first and second order necessary conditions for unconstrained minimization. Our algorithm schema is sufficiently broad to include line search algorithms as well. Next, we show that a wide range of step selection strategies satisfy the requirements of our convergence theory. This leads us to propose several new algorithms that use second derivative information and achieve strong global convergence, including an indefinite line search algorithm, several indefinite dogleg algorithms, and a modified "optimal-step" algorithm. Finally, we propose an implementation of one such indefinite dogleg algorithm. |
doi_str_mv | 10.1137/0722003 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923425631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156918</jstor_id><sourcerecordid>2156918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-d4677e9c007caaebe35c14444876de17bbcd94d2c3d8352db0fbcb65b8c258533</originalsourceid><addsrcrecordid>eNo90N1LwzAQAPAgCs4p_gM-BBF8quajbZrHOdwUJoofzyVN05rRJfOSKfrXG9nwXo67-3EHh9ApJVeUcnFNBGOE8D00okQWmaCC7KNR6pQZzZk8REchLEmqK8pHCCZ4plZ2-Ma-w6-wCTF7Nr31LrtRwbR4MvQebHxfBdx5wG9OexciKOvS8ME6u7I_KiaPv5LCLxG86_F88I0a8NS7TwO9cdrgJ_BrA9GacIwOOjUEc7LLY_Q2u32d3mWLx_n9dLLINCckZm1eCmGkJkRopUxjeKFpnqISZWuoaBrdyrxlmrcVL1jbkK7RTVk0lWZFVXA-RufbvWvwHxsTYr30G3DpZC0Zz1lRcprQ5RZp8CGA6eo12JWC75qS-u-f9e6fSV7s1qmg1dCBctqGfy6p5IzLxM62bBmih_8xo0UpacV_ARs9fmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923425631</pqid></control><display><type>article</type><title>A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties</title><source>SIAM Journals</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Shultz, Gerald A. ; Schnabel, Robert B. ; Byrd, Richard H.</creator><creatorcontrib>Shultz, Gerald A. ; Schnabel, Robert B. ; Byrd, Richard H.</creatorcontrib><description>This paper has two aims: to exhibit very general conditions under which members of a broad class of unconstrained minimization algorithms are globally convergent in a strong sense, and to propose several new algorithms that use second derivative information and achieve such convergence. In the first part of the paper we present a general trust-region-based algorithm schema that includes an undefined step selection strategy. We give general conditions on this step selection strategy under which limit points of the algorithm will satisfy first and second order necessary conditions for unconstrained minimization. Our algorithm schema is sufficiently broad to include line search algorithms as well. Next, we show that a wide range of step selection strategies satisfy the requirements of our convergence theory. This leads us to propose several new algorithms that use second derivative information and achieve strong global convergence, including an indefinite line search algorithm, several indefinite dogleg algorithms, and a modified "optimal-step" algorithm. Finally, we propose an implementation of one such indefinite dogleg algorithm.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0722003</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Arithmetic ; Cholesky factorization ; Curvature ; Eigenvalues ; Eigenvectors ; Exact sciences and technology ; Factorization ; Mathematics ; Necessary conditions ; Numerical analysis ; Numerical analysis in abstract spaces ; Numerical analysis. Scientific computation ; Perceptron convergence procedure ; Sciences and techniques of general use</subject><ispartof>SIAM journal on numerical analysis, 1985-02, Vol.22 (1), p.47-67</ispartof><rights>Copyright 1985 Society for Industrial and Applied Mathematics</rights><rights>1985 INIST-CNRS</rights><rights>[Copyright] © 1985 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-d4677e9c007caaebe35c14444876de17bbcd94d2c3d8352db0fbcb65b8c258533</citedby><cites>FETCH-LOGICAL-c300t-d4677e9c007caaebe35c14444876de17bbcd94d2c3d8352db0fbcb65b8c258533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156918$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156918$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9193239$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shultz, Gerald A.</creatorcontrib><creatorcontrib>Schnabel, Robert B.</creatorcontrib><creatorcontrib>Byrd, Richard H.</creatorcontrib><title>A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties</title><title>SIAM journal on numerical analysis</title><description>This paper has two aims: to exhibit very general conditions under which members of a broad class of unconstrained minimization algorithms are globally convergent in a strong sense, and to propose several new algorithms that use second derivative information and achieve such convergence. In the first part of the paper we present a general trust-region-based algorithm schema that includes an undefined step selection strategy. We give general conditions on this step selection strategy under which limit points of the algorithm will satisfy first and second order necessary conditions for unconstrained minimization. Our algorithm schema is sufficiently broad to include line search algorithms as well. Next, we show that a wide range of step selection strategies satisfy the requirements of our convergence theory. This leads us to propose several new algorithms that use second derivative information and achieve strong global convergence, including an indefinite line search algorithm, several indefinite dogleg algorithms, and a modified "optimal-step" algorithm. Finally, we propose an implementation of one such indefinite dogleg algorithm.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Cholesky factorization</subject><subject>Curvature</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Mathematics</subject><subject>Necessary conditions</subject><subject>Numerical analysis</subject><subject>Numerical analysis in abstract spaces</subject><subject>Numerical analysis. Scientific computation</subject><subject>Perceptron convergence procedure</subject><subject>Sciences and techniques of general use</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90N1LwzAQAPAgCs4p_gM-BBF8quajbZrHOdwUJoofzyVN05rRJfOSKfrXG9nwXo67-3EHh9ApJVeUcnFNBGOE8D00okQWmaCC7KNR6pQZzZk8REchLEmqK8pHCCZ4plZ2-Ma-w6-wCTF7Nr31LrtRwbR4MvQebHxfBdx5wG9OexciKOvS8ME6u7I_KiaPv5LCLxG86_F88I0a8NS7TwO9cdrgJ_BrA9GacIwOOjUEc7LLY_Q2u32d3mWLx_n9dLLINCckZm1eCmGkJkRopUxjeKFpnqISZWuoaBrdyrxlmrcVL1jbkK7RTVk0lWZFVXA-RufbvWvwHxsTYr30G3DpZC0Zz1lRcprQ5RZp8CGA6eo12JWC75qS-u-f9e6fSV7s1qmg1dCBctqGfy6p5IzLxM62bBmih_8xo0UpacV_ARs9fmo</recordid><startdate>19850201</startdate><enddate>19850201</enddate><creator>Shultz, Gerald A.</creator><creator>Schnabel, Robert B.</creator><creator>Byrd, Richard H.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19850201</creationdate><title>A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties</title><author>Shultz, Gerald A. ; Schnabel, Robert B. ; Byrd, Richard H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-d4677e9c007caaebe35c14444876de17bbcd94d2c3d8352db0fbcb65b8c258533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Cholesky factorization</topic><topic>Curvature</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Mathematics</topic><topic>Necessary conditions</topic><topic>Numerical analysis</topic><topic>Numerical analysis in abstract spaces</topic><topic>Numerical analysis. Scientific computation</topic><topic>Perceptron convergence procedure</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shultz, Gerald A.</creatorcontrib><creatorcontrib>Schnabel, Robert B.</creatorcontrib><creatorcontrib>Byrd, Richard H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shultz, Gerald A.</au><au>Schnabel, Robert B.</au><au>Byrd, Richard H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1985-02-01</date><risdate>1985</risdate><volume>22</volume><issue>1</issue><spage>47</spage><epage>67</epage><pages>47-67</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>This paper has two aims: to exhibit very general conditions under which members of a broad class of unconstrained minimization algorithms are globally convergent in a strong sense, and to propose several new algorithms that use second derivative information and achieve such convergence. In the first part of the paper we present a general trust-region-based algorithm schema that includes an undefined step selection strategy. We give general conditions on this step selection strategy under which limit points of the algorithm will satisfy first and second order necessary conditions for unconstrained minimization. Our algorithm schema is sufficiently broad to include line search algorithms as well. Next, we show that a wide range of step selection strategies satisfy the requirements of our convergence theory. This leads us to propose several new algorithms that use second derivative information and achieve strong global convergence, including an indefinite line search algorithm, several indefinite dogleg algorithms, and a modified "optimal-step" algorithm. Finally, we propose an implementation of one such indefinite dogleg algorithm.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0722003</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1985-02, Vol.22 (1), p.47-67 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923425631 |
source | SIAM Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algorithms Arithmetic Cholesky factorization Curvature Eigenvalues Eigenvectors Exact sciences and technology Factorization Mathematics Necessary conditions Numerical analysis Numerical analysis in abstract spaces Numerical analysis. Scientific computation Perceptron convergence procedure Sciences and techniques of general use |
title | A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Family%20of%20Trust-Region-Based%20Algorithms%20for%20Unconstrained%20Minimization%20with%20Strong%20Global%20Convergence%20Properties&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Shultz,%20Gerald%20A.&rft.date=1985-02-01&rft.volume=22&rft.issue=1&rft.spage=47&rft.epage=67&rft.pages=47-67&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0722003&rft_dat=%3Cjstor_proqu%3E2156918%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923425631&rft_id=info:pmid/&rft_jstor_id=2156918&rfr_iscdi=true |