Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media

Miscible displacement of one incompressible fluid by another in a porous medium is modeled by a nonlinear coupled system of two partial differential equations. The pressure equation is elliptic, while the concentration equation is parabolic but normally convection-dominated. A sequential backward-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1985-10, Vol.22 (5), p.970-1013
1. Verfasser: Russell, Thomas F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1013
container_issue 5
container_start_page 970
container_title SIAM journal on numerical analysis
container_volume 22
creator Russell, Thomas F.
description Miscible displacement of one incompressible fluid by another in a porous medium is modeled by a nonlinear coupled system of two partial differential equations. The pressure equation is elliptic, while the concentration equation is parabolic but normally convection-dominated. A sequential backward-difference time-stepping scheme is defined; it approximates the pressure by a standard Galerkin procedure and the concentration by a combination of a Galerkin method and the method of characteristics. Optimal convergence rates in L2 and H1 are demonstrated for this scheme and for a modified version in which the algebraic equations at each time step are solved approximately by a limited number of preconditioned conjugate gradient iterations. Time stepping along the characteristics of the hyperbolic part of the concentration equation is shown to result in smaller time-truncation errors than those of standard methods. Numerical results published elsewhere have confirmed that larger time steps are appropriate with this scheme, and that the approximations exhibit improved qualitative behavior.
doi_str_mv 10.1137/0722059
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923408826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2157410</jstor_id><sourcerecordid>2157410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-abaf7f04e40ed40dea7a997f07dba049b35dc64c5eea7fffd62163e6d5ece3913</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKv4BzwEETytTjbZTfdY6lehoqCel2x2oqnbzZqkqGf_uJEWLzPMvA_vfBByzOCCMS4vQeY5FNUOGTGoikwyCbtkBMDLjIm82icHISwh1RPGR-Tn2a6QPkUcBtu_0mnnUpy9Ka90RG9DtDrQTxvf6LzXbjV0GJHOk6SidT01zlNFb1WH_t32dDoM3n3Z1UZ0ht7boG3TIb2yYeiUxhX2kSby0Xm3DvQeW6sOyZ5RXcCjbR6Tl5vr59ldtni4nc-mi0xzgJipRhlpQKAAbAW0qKSqqtSRbaNAVA0vWl0KXWBSjDFtmbOSY9kWqJFXjI_J6cY3LfmxxhDrpVv7Po2sq5wLmEzyMkHnG0h7F4JHUw8-HeS_awb134Pr7YMTeba1U0GrznjVaxv-8UkhCilFwk422DJE5__lnBVSMOC_89SFqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923408826</pqid></control><display><type>article</type><title>Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Russell, Thomas F.</creator><creatorcontrib>Russell, Thomas F.</creatorcontrib><description>Miscible displacement of one incompressible fluid by another in a porous medium is modeled by a nonlinear coupled system of two partial differential equations. The pressure equation is elliptic, while the concentration equation is parabolic but normally convection-dominated. A sequential backward-difference time-stepping scheme is defined; it approximates the pressure by a standard Galerkin procedure and the concentration by a combination of a Galerkin method and the method of characteristics. Optimal convergence rates in L2 and H1 are demonstrated for this scheme and for a modified version in which the algebraic equations at each time step are solved approximately by a limited number of preconditioned conjugate gradient iterations. Time stepping along the characteristics of the hyperbolic part of the concentration equation is shown to result in smaller time-truncation errors than those of standard methods. Numerical results published elsewhere have confirmed that larger time steps are appropriate with this scheme, and that the approximations exhibit improved qualitative behavior.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0722059</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebraic conjugates ; Approximation ; Boundary conditions ; Coefficients ; Exact sciences and technology ; Galerkin methods ; Mathematical extrapolation ; Mathematical procedures ; Mathematics ; Method of characteristics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, miscellaneous problems ; Perceptron convergence procedure ; Porous materials ; Sciences and techniques of general use</subject><ispartof>SIAM journal on numerical analysis, 1985-10, Vol.22 (5), p.970-1013</ispartof><rights>Copyright 1985 Society for Industrial and Applied Mathematics</rights><rights>1986 INIST-CNRS</rights><rights>[Copyright] © 1985 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-abaf7f04e40ed40dea7a997f07dba049b35dc64c5eea7fffd62163e6d5ece3913</citedby><cites>FETCH-LOGICAL-c300t-abaf7f04e40ed40dea7a997f07dba049b35dc64c5eea7fffd62163e6d5ece3913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2157410$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2157410$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8545774$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Russell, Thomas F.</creatorcontrib><title>Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media</title><title>SIAM journal on numerical analysis</title><description>Miscible displacement of one incompressible fluid by another in a porous medium is modeled by a nonlinear coupled system of two partial differential equations. The pressure equation is elliptic, while the concentration equation is parabolic but normally convection-dominated. A sequential backward-difference time-stepping scheme is defined; it approximates the pressure by a standard Galerkin procedure and the concentration by a combination of a Galerkin method and the method of characteristics. Optimal convergence rates in L2 and H1 are demonstrated for this scheme and for a modified version in which the algebraic equations at each time step are solved approximately by a limited number of preconditioned conjugate gradient iterations. Time stepping along the characteristics of the hyperbolic part of the concentration equation is shown to result in smaller time-truncation errors than those of standard methods. Numerical results published elsewhere have confirmed that larger time steps are appropriate with this scheme, and that the approximations exhibit improved qualitative behavior.</description><subject>Algebraic conjugates</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Exact sciences and technology</subject><subject>Galerkin methods</subject><subject>Mathematical extrapolation</subject><subject>Mathematical procedures</subject><subject>Mathematics</subject><subject>Method of characteristics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, miscellaneous problems</subject><subject>Perceptron convergence procedure</subject><subject>Porous materials</subject><subject>Sciences and techniques of general use</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEQhoMoWKv4BzwEETytTjbZTfdY6lehoqCel2x2oqnbzZqkqGf_uJEWLzPMvA_vfBByzOCCMS4vQeY5FNUOGTGoikwyCbtkBMDLjIm82icHISwh1RPGR-Tn2a6QPkUcBtu_0mnnUpy9Ka90RG9DtDrQTxvf6LzXbjV0GJHOk6SidT01zlNFb1WH_t32dDoM3n3Z1UZ0ht7boG3TIb2yYeiUxhX2kSby0Xm3DvQeW6sOyZ5RXcCjbR6Tl5vr59ldtni4nc-mi0xzgJipRhlpQKAAbAW0qKSqqtSRbaNAVA0vWl0KXWBSjDFtmbOSY9kWqJFXjI_J6cY3LfmxxhDrpVv7Po2sq5wLmEzyMkHnG0h7F4JHUw8-HeS_awb134Pr7YMTeba1U0GrznjVaxv-8UkhCilFwk422DJE5__lnBVSMOC_89SFqA</recordid><startdate>19851001</startdate><enddate>19851001</enddate><creator>Russell, Thomas F.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19851001</creationdate><title>Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media</title><author>Russell, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-abaf7f04e40ed40dea7a997f07dba049b35dc64c5eea7fffd62163e6d5ece3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Algebraic conjugates</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Exact sciences and technology</topic><topic>Galerkin methods</topic><topic>Mathematical extrapolation</topic><topic>Mathematical procedures</topic><topic>Mathematics</topic><topic>Method of characteristics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, miscellaneous problems</topic><topic>Perceptron convergence procedure</topic><topic>Porous materials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, Thomas F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1985-10-01</date><risdate>1985</risdate><volume>22</volume><issue>5</issue><spage>970</spage><epage>1013</epage><pages>970-1013</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>Miscible displacement of one incompressible fluid by another in a porous medium is modeled by a nonlinear coupled system of two partial differential equations. The pressure equation is elliptic, while the concentration equation is parabolic but normally convection-dominated. A sequential backward-difference time-stepping scheme is defined; it approximates the pressure by a standard Galerkin procedure and the concentration by a combination of a Galerkin method and the method of characteristics. Optimal convergence rates in L2 and H1 are demonstrated for this scheme and for a modified version in which the algebraic equations at each time step are solved approximately by a limited number of preconditioned conjugate gradient iterations. Time stepping along the characteristics of the hyperbolic part of the concentration equation is shown to result in smaller time-truncation errors than those of standard methods. Numerical results published elsewhere have confirmed that larger time steps are appropriate with this scheme, and that the approximations exhibit improved qualitative behavior.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0722059</doi><tpages>44</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1985-10, Vol.22 (5), p.970-1013
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_923408826
source SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Algebraic conjugates
Approximation
Boundary conditions
Coefficients
Exact sciences and technology
Galerkin methods
Mathematical extrapolation
Mathematical procedures
Mathematics
Method of characteristics
Methods
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, miscellaneous problems
Perceptron convergence procedure
Porous materials
Sciences and techniques of general use
title Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Stepping%20Along%20Characteristics%20with%20Incomplete%20Iteration%20for%20a%20Galerkin%20Approximation%20of%20Miscible%20Displacement%20in%20Porous%20Media&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Russell,%20Thomas%20F.&rft.date=1985-10-01&rft.volume=22&rft.issue=5&rft.spage=970&rft.epage=1013&rft.pages=970-1013&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0722059&rft_dat=%3Cjstor_proqu%3E2157410%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923408826&rft_id=info:pmid/&rft_jstor_id=2157410&rfr_iscdi=true