Convergence of a Finite Difference Scheme for the Camassa-Holm Equation
We prove that a certain finite difference scheme converges to the weak solution of the Cauchy problem on a finite interval with periodic boundary conditions for the Camassa- Holm equation $u_t - \,u_{xxt} + \,3uu_{x\,} \, - 2u_x u_{xx\,} = \,0$ with initial data $u/_{t = 0} \, = u_0 \, \in \,H^1 \,(...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2006-01, Vol.44 (4), p.1655-1680 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a certain finite difference scheme converges to the weak solution of the Cauchy problem on a finite interval with periodic boundary conditions for the Camassa- Holm equation $u_t - \,u_{xxt} + \,3uu_{x\,} \, - 2u_x u_{xx\,} = \,0$ with initial data $u/_{t = 0} \, = u_0 \, \in \,H^1 \,([0,1]).$ Here it is assumed that $u_0 - u_0^ \, \ge \,0,$ and in this case the solution is unique, globally defined, and energy preserving. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/040611975 |