Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems

We study in this paper a new class of waveform relaxation algorithms for large systems of ordinary differential equations arising from discretizations of partial differential equations of advection reaction diffusion type. We show that the transmission conditions between the subsystems have a tremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2007-01, Vol.45 (2), p.666-697
Hauptverfasser: Gander, M. J., Halpern, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 2
container_start_page 666
container_title SIAM journal on numerical analysis
container_volume 45
creator Gander, M. J.
Halpern, L.
description We study in this paper a new class of waveform relaxation algorithms for large systems of ordinary differential equations arising from discretizations of partial differential equations of advection reaction diffusion type. We show that the transmission conditions between the subsystems have a tremendous influence on the convergence speed of the waveform relaxation algorithms, and we identify transmission conditions with optimal performance. Since these optimal transmission conditions are expensive to use, we introduce a class of local transmission conditions of Robin type, which approximate the optimal ones and can be used at the same cost as the classical transmission conditions. We determine the transmission conditions in this class with the best performance of the associated waveform relaxation algorithm. We show that the new algorithm is well posed and converges much faster than the classical one. We illustrate our analysis with numerical experiments.
doi_str_mv 10.1137/050642137
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923245059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40232881</jstor_id><sourcerecordid>40232881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-4f2c7c2e0185f73101dabe49292c1c5acd27921b83607e25de9b9c6052619fd33</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcPfgCh-OZD9d6kaZvHMecfmEymsseSpgnrWJeZdFP36c2s7Omee_hxDhxCLhFuEVl2BxzShAZ1RHoIgscZZnBMegAsjTGh4pSceb-A8OfIemQ2Wbd1U-90Fb2p-Zd0u2gmt9pY10RTvZTfsq3tKnrR7dxWPgp-NKi2Wv25Uy07cV8bs_F79epsudSNPycnRi69vvi_ffLxMHofPsXjyePzcDCOFUPWxomhKlNUA-bcZAwBK1nqRFBBFSouVUUzQbHMWQqZprzSohQqBU5TFKZirE-uu9y1s58b7dtiYTduFSoLQRlNOHARoJsOUs5677Qp1q5upPspEIr9bMVhtsBedezCt9YdwARCWh4m-wUQEGhB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923245059</pqid></control><display><type>article</type><title>Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems</title><source>SIAM Journals Online</source><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Gander, M. J. ; Halpern, L.</creator><creatorcontrib>Gander, M. J. ; Halpern, L.</creatorcontrib><description>We study in this paper a new class of waveform relaxation algorithms for large systems of ordinary differential equations arising from discretizations of partial differential equations of advection reaction diffusion type. We show that the transmission conditions between the subsystems have a tremendous influence on the convergence speed of the waveform relaxation algorithms, and we identify transmission conditions with optimal performance. Since these optimal transmission conditions are expensive to use, we introduce a class of local transmission conditions of Robin type, which approximate the optimal ones and can be used at the same cost as the classical transmission conditions. We determine the transmission conditions in this class with the best performance of the associated waveform relaxation algorithm. We show that the new algorithm is well posed and converges much faster than the classical one. We illustrate our analysis with numerical experiments.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/050642137</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Advection ; Algorithms ; Approximation ; Boundary conditions ; Decomposition ; Experiments ; Fourier transformations ; Initial guess ; Low frequencies ; Perceptron convergence procedure ; Spacetime ; Waveforms</subject><ispartof>SIAM journal on numerical analysis, 2007-01, Vol.45 (2), p.666-697</ispartof><rights>Copyright 2008 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2007 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-4f2c7c2e0185f73101dabe49292c1c5acd27921b83607e25de9b9c6052619fd33</citedby><cites>FETCH-LOGICAL-c313t-4f2c7c2e0185f73101dabe49292c1c5acd27921b83607e25de9b9c6052619fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40232881$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40232881$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Gander, M. J.</creatorcontrib><creatorcontrib>Halpern, L.</creatorcontrib><title>Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems</title><title>SIAM journal on numerical analysis</title><description>We study in this paper a new class of waveform relaxation algorithms for large systems of ordinary differential equations arising from discretizations of partial differential equations of advection reaction diffusion type. We show that the transmission conditions between the subsystems have a tremendous influence on the convergence speed of the waveform relaxation algorithms, and we identify transmission conditions with optimal performance. Since these optimal transmission conditions are expensive to use, we introduce a class of local transmission conditions of Robin type, which approximate the optimal ones and can be used at the same cost as the classical transmission conditions. We determine the transmission conditions in this class with the best performance of the associated waveform relaxation algorithm. We show that the new algorithm is well posed and converges much faster than the classical one. We illustrate our analysis with numerical experiments.</description><subject>Advection</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Decomposition</subject><subject>Experiments</subject><subject>Fourier transformations</subject><subject>Initial guess</subject><subject>Low frequencies</subject><subject>Perceptron convergence procedure</subject><subject>Spacetime</subject><subject>Waveforms</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kF9LwzAUxYMoOKcPfgCh-OZD9d6kaZvHMecfmEymsseSpgnrWJeZdFP36c2s7Omee_hxDhxCLhFuEVl2BxzShAZ1RHoIgscZZnBMegAsjTGh4pSceb-A8OfIemQ2Wbd1U-90Fb2p-Zd0u2gmt9pY10RTvZTfsq3tKnrR7dxWPgp-NKi2Wv25Uy07cV8bs_F79epsudSNPycnRi69vvi_ffLxMHofPsXjyePzcDCOFUPWxomhKlNUA-bcZAwBK1nqRFBBFSouVUUzQbHMWQqZprzSohQqBU5TFKZirE-uu9y1s58b7dtiYTduFSoLQRlNOHARoJsOUs5677Qp1q5upPspEIr9bMVhtsBedezCt9YdwARCWh4m-wUQEGhB</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Gander, M. J.</creator><creator>Halpern, L.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20070101</creationdate><title>Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems</title><author>Gander, M. J. ; Halpern, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-4f2c7c2e0185f73101dabe49292c1c5acd27921b83607e25de9b9c6052619fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Advection</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Decomposition</topic><topic>Experiments</topic><topic>Fourier transformations</topic><topic>Initial guess</topic><topic>Low frequencies</topic><topic>Perceptron convergence procedure</topic><topic>Spacetime</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gander, M. J.</creatorcontrib><creatorcontrib>Halpern, L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gander, M. J.</au><au>Halpern, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>45</volume><issue>2</issue><spage>666</spage><epage>697</epage><pages>666-697</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>We study in this paper a new class of waveform relaxation algorithms for large systems of ordinary differential equations arising from discretizations of partial differential equations of advection reaction diffusion type. We show that the transmission conditions between the subsystems have a tremendous influence on the convergence speed of the waveform relaxation algorithms, and we identify transmission conditions with optimal performance. Since these optimal transmission conditions are expensive to use, we introduce a class of local transmission conditions of Robin type, which approximate the optimal ones and can be used at the same cost as the classical transmission conditions. We determine the transmission conditions in this class with the best performance of the associated waveform relaxation algorithm. We show that the new algorithm is well posed and converges much faster than the classical one. We illustrate our analysis with numerical experiments.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/050642137</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2007-01, Vol.45 (2), p.666-697
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_923245059
source SIAM Journals Online; Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Advection
Algorithms
Approximation
Boundary conditions
Decomposition
Experiments
Fourier transformations
Initial guess
Low frequencies
Perceptron convergence procedure
Spacetime
Waveforms
title Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Schwarz%20Waveform%20Relaxation%20Methods%20for%20Advection%20Reaction%20Diffusion%20Problems&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Gander,%20M.%20J.&rft.date=2007-01-01&rft.volume=45&rft.issue=2&rft.spage=666&rft.epage=697&rft.pages=666-697&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/050642137&rft_dat=%3Cjstor_proqu%3E40232881%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923245059&rft_id=info:pmid/&rft_jstor_id=40232881&rfr_iscdi=true