A Cardinal Function Algorithm for Computing Multivariate Quadrature Points
We present a new algorithm for numerically computing quadrature formulas for arbitrary domains which exactly integrate a given polynomial space. An effective method for constructing quadrature formulas has been to numerically solve a nonlinear set of equations for the quadrature points and their ass...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2007-01, Vol.45 (1), p.193-205 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 1 |
container_start_page | 193 |
container_title | SIAM journal on numerical analysis |
container_volume | 45 |
creator | Taylor, Mark A. Wingate, Beth A. Bos, Len P. |
description | We present a new algorithm for numerically computing quadrature formulas for arbitrary domains which exactly integrate a given polynomial space. An effective method for constructing quadrature formulas has been to numerically solve a nonlinear set of equations for the quadrature points and their associated weights. Symmetry conditions are often used to reduce the number of equations and unknowns. Our algorithm instead relies on the construction of cardinal functions and thus requires that the number of quadrature points N be equal to the dimension of a prescribed lower dimensional polynomial space. The cardinal functions allow us to treat the quadrature weights as dependent variables and remove them, as well as an equivalent number of equations, from the numerical optimization procedure. We give results for the triangle, where for all degrees d ≤ 25, we find quadrature formulas of this form which have positive weights and contain no points outside the triangle. Seven of these quadrature formulas improve on previously known results. |
doi_str_mv | 10.1137/050625801 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_923241748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40232923</jstor_id><sourcerecordid>40232923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-c4a0dd29a637779c7549defa1f5f84d90df9ef3e537d6f5608124c8ca41281853</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKsLf4AQBBcuRvOcJMtSrA8qKuh6CHloynRSk4zgvzfS0tXlcr97DucAcI7RDcZU3CKOWsIlwgdggpHijcACHYIJQrRtMCPqGJzkvEJ1l5hOwNMMznWyYdA9XIyDKSEOcNZ_xhTK1xr6mOA8rjdjCcMnfB77En50Cro4-DZqm3QZk4OvMQwln4Ijr_vsznZzCj4Wd-_zh2b5cv84ny0bQ5EsjWEaWUuUbqkQQhnBmbLOa-y5l8wqZL1ynjpOhW09b5HEhBlpNMNEYsnpFFxudTcpfo8ul24Vx1QD5E4RShgWTFboeguZFHNOznebFNY6_XYYdf9NdfumKnu1E9TZ6N4nPZiQ9w8EYV6NWeUuttwql5j2d4aqa3Wmf2o0cCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923241748</pqid></control><display><type>article</type><title>A Cardinal Function Algorithm for Computing Multivariate Quadrature Points</title><source>SIAM Journals Online</source><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Taylor, Mark A. ; Wingate, Beth A. ; Bos, Len P.</creator><creatorcontrib>Taylor, Mark A. ; Wingate, Beth A. ; Bos, Len P.</creatorcontrib><description>We present a new algorithm for numerically computing quadrature formulas for arbitrary domains which exactly integrate a given polynomial space. An effective method for constructing quadrature formulas has been to numerically solve a nonlinear set of equations for the quadrature points and their associated weights. Symmetry conditions are often used to reduce the number of equations and unknowns. Our algorithm instead relies on the construction of cardinal functions and thus requires that the number of quadrature points N be equal to the dimension of a prescribed lower dimensional polynomial space. The cardinal functions allow us to treat the quadrature weights as dependent variables and remove them, as well as an equivalent number of equations, from the numerical optimization procedure. We give results for the triangle, where for all degrees d ≤ 25, we find quadrature formulas of this form which have positive weights and contain no points outside the triangle. Seven of these quadrature formulas improve on previously known results.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/050625801</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Approximations and expansions ; Calculus of variations and optimal control ; Cardinal points ; Coordinate systems ; Exact sciences and technology ; Gaussian quadratures ; Interpolation ; Laboratories ; Mathematical analysis ; Mathematical functions ; Mathematics ; Newtons method ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical quadratures ; Polynomials ; Sciences and techniques of general use ; Spectral methods ; Symmetry</subject><ispartof>SIAM journal on numerical analysis, 2007-01, Vol.45 (1), p.193-205</ispartof><rights>Copyright 2008 Society for Industrial and Applied Mathematics</rights><rights>2008 INIST-CNRS</rights><rights>[Copyright] © 2007 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-c4a0dd29a637779c7549defa1f5f84d90df9ef3e537d6f5608124c8ca41281853</citedby><cites>FETCH-LOGICAL-c308t-c4a0dd29a637779c7549defa1f5f84d90df9ef3e537d6f5608124c8ca41281853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40232923$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40232923$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20158184$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Mark A.</creatorcontrib><creatorcontrib>Wingate, Beth A.</creatorcontrib><creatorcontrib>Bos, Len P.</creatorcontrib><title>A Cardinal Function Algorithm for Computing Multivariate Quadrature Points</title><title>SIAM journal on numerical analysis</title><description>We present a new algorithm for numerically computing quadrature formulas for arbitrary domains which exactly integrate a given polynomial space. An effective method for constructing quadrature formulas has been to numerically solve a nonlinear set of equations for the quadrature points and their associated weights. Symmetry conditions are often used to reduce the number of equations and unknowns. Our algorithm instead relies on the construction of cardinal functions and thus requires that the number of quadrature points N be equal to the dimension of a prescribed lower dimensional polynomial space. The cardinal functions allow us to treat the quadrature weights as dependent variables and remove them, as well as an equivalent number of equations, from the numerical optimization procedure. We give results for the triangle, where for all degrees d ≤ 25, we find quadrature formulas of this form which have positive weights and contain no points outside the triangle. Seven of these quadrature formulas improve on previously known results.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximations and expansions</subject><subject>Calculus of variations and optimal control</subject><subject>Cardinal points</subject><subject>Coordinate systems</subject><subject>Exact sciences and technology</subject><subject>Gaussian quadratures</subject><subject>Interpolation</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Newtons method</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical quadratures</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Spectral methods</subject><subject>Symmetry</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEtLAzEUhYMoWKsLf4AQBBcuRvOcJMtSrA8qKuh6CHloynRSk4zgvzfS0tXlcr97DucAcI7RDcZU3CKOWsIlwgdggpHijcACHYIJQrRtMCPqGJzkvEJ1l5hOwNMMznWyYdA9XIyDKSEOcNZ_xhTK1xr6mOA8rjdjCcMnfB77En50Cro4-DZqm3QZk4OvMQwln4Ijr_vsznZzCj4Wd-_zh2b5cv84ny0bQ5EsjWEaWUuUbqkQQhnBmbLOa-y5l8wqZL1ynjpOhW09b5HEhBlpNMNEYsnpFFxudTcpfo8ul24Vx1QD5E4RShgWTFboeguZFHNOznebFNY6_XYYdf9NdfumKnu1E9TZ6N4nPZiQ9w8EYV6NWeUuttwql5j2d4aqa3Wmf2o0cCs</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Taylor, Mark A.</creator><creator>Wingate, Beth A.</creator><creator>Bos, Len P.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20070101</creationdate><title>A Cardinal Function Algorithm for Computing Multivariate Quadrature Points</title><author>Taylor, Mark A. ; Wingate, Beth A. ; Bos, Len P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-c4a0dd29a637779c7549defa1f5f84d90df9ef3e537d6f5608124c8ca41281853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximations and expansions</topic><topic>Calculus of variations and optimal control</topic><topic>Cardinal points</topic><topic>Coordinate systems</topic><topic>Exact sciences and technology</topic><topic>Gaussian quadratures</topic><topic>Interpolation</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Newtons method</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical quadratures</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Spectral methods</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Mark A.</creatorcontrib><creatorcontrib>Wingate, Beth A.</creatorcontrib><creatorcontrib>Bos, Len P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Mark A.</au><au>Wingate, Beth A.</au><au>Bos, Len P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cardinal Function Algorithm for Computing Multivariate Quadrature Points</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>45</volume><issue>1</issue><spage>193</spage><epage>205</epage><pages>193-205</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>We present a new algorithm for numerically computing quadrature formulas for arbitrary domains which exactly integrate a given polynomial space. An effective method for constructing quadrature formulas has been to numerically solve a nonlinear set of equations for the quadrature points and their associated weights. Symmetry conditions are often used to reduce the number of equations and unknowns. Our algorithm instead relies on the construction of cardinal functions and thus requires that the number of quadrature points N be equal to the dimension of a prescribed lower dimensional polynomial space. The cardinal functions allow us to treat the quadrature weights as dependent variables and remove them, as well as an equivalent number of equations, from the numerical optimization procedure. We give results for the triangle, where for all degrees d ≤ 25, we find quadrature formulas of this form which have positive weights and contain no points outside the triangle. Seven of these quadrature formulas improve on previously known results.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/050625801</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2007-01, Vol.45 (1), p.193-205 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_923241748 |
source | SIAM Journals Online; Jstor Complete Legacy; JSTOR Mathematics & Statistics |
subjects | Algorithms Approximation Approximations and expansions Calculus of variations and optimal control Cardinal points Coordinate systems Exact sciences and technology Gaussian quadratures Interpolation Laboratories Mathematical analysis Mathematical functions Mathematics Newtons method Numerical analysis Numerical analysis. Scientific computation Numerical approximation Numerical methods in mathematical programming, optimization and calculus of variations Numerical quadratures Polynomials Sciences and techniques of general use Spectral methods Symmetry |
title | A Cardinal Function Algorithm for Computing Multivariate Quadrature Points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cardinal%20Function%20Algorithm%20for%20Computing%20Multivariate%20Quadrature%20Points&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Taylor,%20Mark%20A.&rft.date=2007-01-01&rft.volume=45&rft.issue=1&rft.spage=193&rft.epage=205&rft.pages=193-205&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/050625801&rft_dat=%3Cjstor_proqu%3E40232923%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923241748&rft_id=info:pmid/&rft_jstor_id=40232923&rfr_iscdi=true |