Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"

In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is alr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 2012-04, Vol.61 (4), p.591-592
1. Verfasser: Lee, Mun-Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 592
container_issue 4
container_start_page 591
container_title IEEE transactions on computers
container_volume 61
creator Lee, Mun-Kyu
description In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is already sublinear and also guarantees a better average performance.
doi_str_mv 10.1109/TC.2011.109
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_923177002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5928323</ieee_id><sourcerecordid>2593626951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-157b288cbf65a2dac422520bcf9b184915a0821ca90c929bce38d13d14016ee83</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKdPPvoS9iqdl6Rpk0cp6oYTB87nkqapdLRNTdrJ_OvNnAgHdwfffQc_hK4JzAkBebfJ5hQImYf5BE0I52kkJU9O0QSAiEiyGM7RhfdbAEgoyAn6yGzbmm7w2HZ4tnZ2p4pmj9_Goqk7oxxe27ob8MvYDHXf1FoNdQBDPdtADN84G93OeKy6Ei-DZaFc-aWcwcu2b8zB_Hsxu0RnlWq8ufrrU_T--LDJFtHq9WmZ3a8iTZkYIsLTggqhiyrhipZKx5RyCoWuZEFELAlXICjRSoKWVBbaMFESVpIYSGKMYFM0O3p7Zz9H44d8a0fXhZe5pIykKQAN0O0R0s5670yV965uldvnBPJDkPkmyw9Bhl0G-uZI18aYf5JLKhhl7Add1G58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923177002</pqid></control><display><type>article</type><title>Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Mun-Kyu</creator><creatorcontrib>Lee, Mun-Kyu</creatorcontrib><description>In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is already sublinear and also guarantees a better average performance.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2011.109</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Computational efficiency ; Elliptic curve cryptography ; Elliptic curves ; Koblitz curves ; Markov processes ; Memory management ; sublinearity</subject><ispartof>IEEE transactions on computers, 2012-04, Vol.61 (4), p.591-592</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-157b288cbf65a2dac422520bcf9b184915a0821ca90c929bce38d13d14016ee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5928323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5928323$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Mun-Kyu</creatorcontrib><title>Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is already sublinear and also guarantees a better average performance.</description><subject>Algorithm design and analysis</subject><subject>Computational efficiency</subject><subject>Elliptic curve cryptography</subject><subject>Elliptic curves</subject><subject>Koblitz curves</subject><subject>Markov processes</subject><subject>Memory management</subject><subject>sublinearity</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4MoOKdPPvoS9iqdl6Rpk0cp6oYTB87nkqapdLRNTdrJ_OvNnAgHdwfffQc_hK4JzAkBebfJ5hQImYf5BE0I52kkJU9O0QSAiEiyGM7RhfdbAEgoyAn6yGzbmm7w2HZ4tnZ2p4pmj9_Goqk7oxxe27ob8MvYDHXf1FoNdQBDPdtADN84G93OeKy6Ei-DZaFc-aWcwcu2b8zB_Hsxu0RnlWq8ufrrU_T--LDJFtHq9WmZ3a8iTZkYIsLTggqhiyrhipZKx5RyCoWuZEFELAlXICjRSoKWVBbaMFESVpIYSGKMYFM0O3p7Zz9H44d8a0fXhZe5pIykKQAN0O0R0s5670yV965uldvnBPJDkPkmyw9Bhl0G-uZI18aYf5JLKhhl7Add1G58</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Lee, Mun-Kyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120401</creationdate><title>Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"</title><author>Lee, Mun-Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-157b288cbf65a2dac422520bcf9b184915a0821ca90c929bce38d13d14016ee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Computational efficiency</topic><topic>Elliptic curve cryptography</topic><topic>Elliptic curves</topic><topic>Koblitz curves</topic><topic>Markov processes</topic><topic>Memory management</topic><topic>sublinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Mun-Kyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Mun-Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>61</volume><issue>4</issue><spage>591</spage><epage>592</epage><pages>591-592</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is already sublinear and also guarantees a better average performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2011.109</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2012-04, Vol.61 (4), p.591-592
issn 0018-9340
1557-9956
language eng
recordid cdi_proquest_journals_923177002
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Computational efficiency
Elliptic curve cryptography
Elliptic curves
Koblitz curves
Markov processes
Memory management
sublinearity
title Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comments%20on%20%22Provably%20Sublinear%20Point%20Multiplication%20on%20Koblitz%20Curves%20and%20Its%20Hardware%20Implementation%22&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Lee,%20Mun-Kyu&rft.date=2012-04-01&rft.volume=61&rft.issue=4&rft.spage=591&rft.epage=592&rft.pages=591-592&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2011.109&rft_dat=%3Cproquest_RIE%3E2593626951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923177002&rft_id=info:pmid/&rft_ieee_id=5928323&rfr_iscdi=true