Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"
In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is alr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2012-04, Vol.61 (4), p.591-592 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 592 |
---|---|
container_issue | 4 |
container_start_page | 591 |
container_title | IEEE transactions on computers |
container_volume | 61 |
creator | Lee, Mun-Kyu |
description | In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is already sublinear and also guarantees a better average performance. |
doi_str_mv | 10.1109/TC.2011.109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_923177002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5928323</ieee_id><sourcerecordid>2593626951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-157b288cbf65a2dac422520bcf9b184915a0821ca90c929bce38d13d14016ee83</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKdPPvoS9iqdl6Rpk0cp6oYTB87nkqapdLRNTdrJ_OvNnAgHdwfffQc_hK4JzAkBebfJ5hQImYf5BE0I52kkJU9O0QSAiEiyGM7RhfdbAEgoyAn6yGzbmm7w2HZ4tnZ2p4pmj9_Goqk7oxxe27ob8MvYDHXf1FoNdQBDPdtADN84G93OeKy6Ei-DZaFc-aWcwcu2b8zB_Hsxu0RnlWq8ufrrU_T--LDJFtHq9WmZ3a8iTZkYIsLTggqhiyrhipZKx5RyCoWuZEFELAlXICjRSoKWVBbaMFESVpIYSGKMYFM0O3p7Zz9H44d8a0fXhZe5pIykKQAN0O0R0s5670yV965uldvnBPJDkPkmyw9Bhl0G-uZI18aYf5JLKhhl7Add1G58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923177002</pqid></control><display><type>article</type><title>Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Mun-Kyu</creator><creatorcontrib>Lee, Mun-Kyu</creatorcontrib><description>In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is already sublinear and also guarantees a better average performance.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2011.109</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Computational efficiency ; Elliptic curve cryptography ; Elliptic curves ; Koblitz curves ; Markov processes ; Memory management ; sublinearity</subject><ispartof>IEEE transactions on computers, 2012-04, Vol.61 (4), p.591-592</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-157b288cbf65a2dac422520bcf9b184915a0821ca90c929bce38d13d14016ee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5928323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5928323$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Mun-Kyu</creatorcontrib><title>Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is already sublinear and also guarantees a better average performance.</description><subject>Algorithm design and analysis</subject><subject>Computational efficiency</subject><subject>Elliptic curve cryptography</subject><subject>Elliptic curves</subject><subject>Koblitz curves</subject><subject>Markov processes</subject><subject>Memory management</subject><subject>sublinearity</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4MoOKdPPvoS9iqdl6Rpk0cp6oYTB87nkqapdLRNTdrJ_OvNnAgHdwfffQc_hK4JzAkBebfJ5hQImYf5BE0I52kkJU9O0QSAiEiyGM7RhfdbAEgoyAn6yGzbmm7w2HZ4tnZ2p4pmj9_Goqk7oxxe27ob8MvYDHXf1FoNdQBDPdtADN84G93OeKy6Ei-DZaFc-aWcwcu2b8zB_Hsxu0RnlWq8ufrrU_T--LDJFtHq9WmZ3a8iTZkYIsLTggqhiyrhipZKx5RyCoWuZEFELAlXICjRSoKWVBbaMFESVpIYSGKMYFM0O3p7Zz9H44d8a0fXhZe5pIykKQAN0O0R0s5670yV965uldvnBPJDkPkmyw9Bhl0G-uZI18aYf5JLKhhl7Add1G58</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Lee, Mun-Kyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120401</creationdate><title>Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"</title><author>Lee, Mun-Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-157b288cbf65a2dac422520bcf9b184915a0821ca90c929bce38d13d14016ee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Computational efficiency</topic><topic>Elliptic curve cryptography</topic><topic>Elliptic curves</topic><topic>Koblitz curves</topic><topic>Markov processes</topic><topic>Memory management</topic><topic>sublinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Mun-Kyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Mun-Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation"</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>61</volume><issue>4</issue><spage>591</spage><epage>592</epage><pages>591-592</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>In 2008, Dimitrov et al. proposed a point multiplication algorithm on Koblitz curves using multiple-base expansions. They claimed that their algorithm is the first provably sublinear point multiplication algorithm on Koblitz curves. In this paper, we show that the well-known τ-adic NAF method is already sublinear and also guarantees a better average performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2011.109</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2012-04, Vol.61 (4), p.591-592 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_proquest_journals_923177002 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Computational efficiency Elliptic curve cryptography Elliptic curves Koblitz curves Markov processes Memory management sublinearity |
title | Comments on "Provably Sublinear Point Multiplication on Koblitz Curves and Its Hardware Implementation" |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comments%20on%20%22Provably%20Sublinear%20Point%20Multiplication%20on%20Koblitz%20Curves%20and%20Its%20Hardware%20Implementation%22&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Lee,%20Mun-Kyu&rft.date=2012-04-01&rft.volume=61&rft.issue=4&rft.spage=591&rft.epage=592&rft.pages=591-592&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2011.109&rft_dat=%3Cproquest_RIE%3E2593626951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923177002&rft_id=info:pmid/&rft_ieee_id=5928323&rfr_iscdi=true |