Convergence of the Finite Volume Method for Multidimensional Conservation Laws
We establish the convergence of the finite volume method applied to multidimensional hyperbolic conservation laws and based on monotone numerical flux-functions. Our technique applies with a fairly unrestrictive assumption on the triangulations ("flat elements" are allowed) and to Lipschit...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1995-06, Vol.32 (3), p.687-705 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 705 |
---|---|
container_issue | 3 |
container_start_page | 687 |
container_title | SIAM journal on numerical analysis |
container_volume | 32 |
creator | Cockburn, B. Coquel, F. Lefloch, P. G. |
description | We establish the convergence of the finite volume method applied to multidimensional hyperbolic conservation laws and based on monotone numerical flux-functions. Our technique applies with a fairly unrestrictive assumption on the triangulations ("flat elements" are allowed) and to Lipschitz continuous flux-functions. We treat the initial and boundary value problem and obtain the strong convergence of the scheme to the unique entropy discontinuous solution in the sense of Kruzkov. The proof of convergence is based on a convergence framework [Coquel and LeFloch, Math. Comp., 57 (1991), pp. 169-210 and J. Numer. Anal., 30 (1993), pp. 675-700]. From a convex decomposition of the scheme, we derive a new estimate for the rate of entropy dissipation and a new formulation of the discrete entropy inequalities. These estimates are shown to be sufficient for the passage to the limit in the discrete equation. Convergence follows from DiPerna's uniqueness result in the class of entropy measure-valued solutions. |
doi_str_mv | 10.1137/0732032 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922785134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2158444</jstor_id><sourcerecordid>2158444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-cafd651b7fe8284819a0eab564286c4189fa819e3e83f6a30c38102b018664673</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKv4BTwEETyt5n-yRylWhVYv6nVJ04ndst3UJK347U1p8TTMzG_ePB5Cl5TcUcr1PdGcEc6O0ICSWlaaanKMBoRwVVHB6lN0ltKSlN5QPkCvo9BvIX5B7wAHj_MC8Ljt2wz4M3SbFeAp5EWYYx8inm663M7bFfSpDb3tcDlOELc2lxZP7E86RyfedgkuDnWIPsaP76PnavL29DJ6mFSOcZYrZ_1cSTrTHgwzwtDaErAzqQQzyglqam_LEDgY7pXlxBW3hM0INUoJpfkQXe911zF8byDlZhk2sVhKTc2YNpJyUaDbPeRiSCmCb9axXdn421DS7LJqDlkV8uYgZ5OznY-2d236x7mUsta7r1d7bJlyiP9rRqURQvA_y1pv1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922785134</pqid></control><display><type>article</type><title>Convergence of the Finite Volume Method for Multidimensional Conservation Laws</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Cockburn, B. ; Coquel, F. ; Lefloch, P. G.</creator><creatorcontrib>Cockburn, B. ; Coquel, F. ; Lefloch, P. G.</creatorcontrib><description>We establish the convergence of the finite volume method applied to multidimensional hyperbolic conservation laws and based on monotone numerical flux-functions. Our technique applies with a fairly unrestrictive assumption on the triangulations ("flat elements" are allowed) and to Lipschitz continuous flux-functions. We treat the initial and boundary value problem and obtain the strong convergence of the scheme to the unique entropy discontinuous solution in the sense of Kruzkov. The proof of convergence is based on a convergence framework [Coquel and LeFloch, Math. Comp., 57 (1991), pp. 169-210 and J. Numer. Anal., 30 (1993), pp. 675-700]. From a convex decomposition of the scheme, we derive a new estimate for the rate of entropy dissipation and a new formulation of the discrete entropy inequalities. These estimates are shown to be sufficient for the passage to the limit in the discrete equation. Convergence follows from DiPerna's uniqueness result in the class of entropy measure-valued solutions.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0732032</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Applied mathematics ; Approximation ; Boundary conditions ; Boundary value problems ; Conservation laws ; Entropy ; Exact sciences and technology ; Finite volume method ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Polyhedrons ; Scalars ; Sciences and techniques of general use ; Triangulation</subject><ispartof>SIAM journal on numerical analysis, 1995-06, Vol.32 (3), p.687-705</ispartof><rights>Copyright 1995 Society for Industrial and Applied Mathematics</rights><rights>1995 INIST-CNRS</rights><rights>[Copyright] © 1995 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-cafd651b7fe8284819a0eab564286c4189fa819e3e83f6a30c38102b018664673</citedby><cites>FETCH-LOGICAL-c232t-cafd651b7fe8284819a0eab564286c4189fa819e3e83f6a30c38102b018664673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2158444$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2158444$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3555977$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cockburn, B.</creatorcontrib><creatorcontrib>Coquel, F.</creatorcontrib><creatorcontrib>Lefloch, P. G.</creatorcontrib><title>Convergence of the Finite Volume Method for Multidimensional Conservation Laws</title><title>SIAM journal on numerical analysis</title><description>We establish the convergence of the finite volume method applied to multidimensional hyperbolic conservation laws and based on monotone numerical flux-functions. Our technique applies with a fairly unrestrictive assumption on the triangulations ("flat elements" are allowed) and to Lipschitz continuous flux-functions. We treat the initial and boundary value problem and obtain the strong convergence of the scheme to the unique entropy discontinuous solution in the sense of Kruzkov. The proof of convergence is based on a convergence framework [Coquel and LeFloch, Math. Comp., 57 (1991), pp. 169-210 and J. Numer. Anal., 30 (1993), pp. 675-700]. From a convex decomposition of the scheme, we derive a new estimate for the rate of entropy dissipation and a new formulation of the discrete entropy inequalities. These estimates are shown to be sufficient for the passage to the limit in the discrete equation. Convergence follows from DiPerna's uniqueness result in the class of entropy measure-valued solutions.</description><subject>A priori knowledge</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Conservation laws</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Finite volume method</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Polyhedrons</subject><subject>Scalars</subject><subject>Sciences and techniques of general use</subject><subject>Triangulation</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE9LAzEQxYMoWKv4BTwEETyt5n-yRylWhVYv6nVJ04ndst3UJK347U1p8TTMzG_ePB5Cl5TcUcr1PdGcEc6O0ICSWlaaanKMBoRwVVHB6lN0ltKSlN5QPkCvo9BvIX5B7wAHj_MC8Ljt2wz4M3SbFeAp5EWYYx8inm663M7bFfSpDb3tcDlOELc2lxZP7E86RyfedgkuDnWIPsaP76PnavL29DJ6mFSOcZYrZ_1cSTrTHgwzwtDaErAzqQQzyglqam_LEDgY7pXlxBW3hM0INUoJpfkQXe911zF8byDlZhk2sVhKTc2YNpJyUaDbPeRiSCmCb9axXdn421DS7LJqDlkV8uYgZ5OznY-2d236x7mUsta7r1d7bJlyiP9rRqURQvA_y1pv1g</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Cockburn, B.</creator><creator>Coquel, F.</creator><creator>Lefloch, P. G.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19950601</creationdate><title>Convergence of the Finite Volume Method for Multidimensional Conservation Laws</title><author>Cockburn, B. ; Coquel, F. ; Lefloch, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-cafd651b7fe8284819a0eab564286c4189fa819e3e83f6a30c38102b018664673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>A priori knowledge</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Conservation laws</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Finite volume method</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Polyhedrons</topic><topic>Scalars</topic><topic>Sciences and techniques of general use</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cockburn, B.</creatorcontrib><creatorcontrib>Coquel, F.</creatorcontrib><creatorcontrib>Lefloch, P. G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cockburn, B.</au><au>Coquel, F.</au><au>Lefloch, P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of the Finite Volume Method for Multidimensional Conservation Laws</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1995-06-01</date><risdate>1995</risdate><volume>32</volume><issue>3</issue><spage>687</spage><epage>705</epage><pages>687-705</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>We establish the convergence of the finite volume method applied to multidimensional hyperbolic conservation laws and based on monotone numerical flux-functions. Our technique applies with a fairly unrestrictive assumption on the triangulations ("flat elements" are allowed) and to Lipschitz continuous flux-functions. We treat the initial and boundary value problem and obtain the strong convergence of the scheme to the unique entropy discontinuous solution in the sense of Kruzkov. The proof of convergence is based on a convergence framework [Coquel and LeFloch, Math. Comp., 57 (1991), pp. 169-210 and J. Numer. Anal., 30 (1993), pp. 675-700]. From a convex decomposition of the scheme, we derive a new estimate for the rate of entropy dissipation and a new formulation of the discrete entropy inequalities. These estimates are shown to be sufficient for the passage to the limit in the discrete equation. Convergence follows from DiPerna's uniqueness result in the class of entropy measure-valued solutions.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0732032</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1995-06, Vol.32 (3), p.687-705 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_922785134 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | A priori knowledge Applied mathematics Approximation Boundary conditions Boundary value problems Conservation laws Entropy Exact sciences and technology Finite volume method Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, initial value problems and time-dependant initial-boundary value problems Polyhedrons Scalars Sciences and techniques of general use Triangulation |
title | Convergence of the Finite Volume Method for Multidimensional Conservation Laws |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20the%20Finite%20Volume%20Method%20for%20Multidimensional%20Conservation%20Laws&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Cockburn,%20B.&rft.date=1995-06-01&rft.volume=32&rft.issue=3&rft.spage=687&rft.epage=705&rft.pages=687-705&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/0732032&rft_dat=%3Cjstor_proqu%3E2158444%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922785134&rft_id=info:pmid/&rft_jstor_id=2158444&rfr_iscdi=true |