Extreme Points of the Unit Ball in the Dual Space of Some Real Subspaces of Banach Spaces of Lipschitz Functions

Let X be a compact Hausdorff space, τ be a continuous involution on X and C(X,τ) denote the uniformly closed real subalgebra of C(X) consisting of all f∈C(X) for which f∘τ=f̅. Let (X,d) be a compact metric space and let Lip(X,dα) denote the complex Banach space of complex-valued Lipschitz functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN mathematical analysis 2012-01, Vol.2012 (2012), p.1-13
Hauptverfasser: Alimohammadi, Davood, Pazandeh, Hadis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2012
container_start_page 1
container_title ISRN mathematical analysis
container_volume 2012
creator Alimohammadi, Davood
Pazandeh, Hadis
description Let X be a compact Hausdorff space, τ be a continuous involution on X and C(X,τ) denote the uniformly closed real subalgebra of C(X) consisting of all f∈C(X) for which f∘τ=f̅. Let (X,d) be a compact metric space and let Lip(X,dα) denote the complex Banach space of complex-valued Lipschitz functions of order α on (X,d) under the norm ∥f∥X,pα=max⁡{∥f∥X,pα(f)}, where α∈(0,1]. For α∈(0,1), the closed subalgebra of Lip(X,α) consisting of all f∈Lip(X,dα) for which |f(x)-f(y)|/dα(x,y)→0 as d(x,y)→0, denotes by lip(X,dα). Let τ be a Lipschitz involution on (X,d) and define Lip(X,τ,dα)=Lip(X,dα)∩C(X,τ) for α∈(0,1] and lip(X,τ,dα)=lip(X,dα)∩C(X,τ) for α∈(0,1). In this paper, we give a characterization of extreme points of BA*, where A is a real linear subspace of Lip(X,dα) or lip(X,dα) which contains 1, in particular, Lip(X,τ,dα) or lip(X,τ,dα).
doi_str_mv 10.5402/2012/735139
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_922778479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592791921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1999-4306695918314a3071c9116fd6125891c22d6fdee822a27d59eaeb2486acffc53</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCo65k2cheFTq8t3m6OamwkBx7lyyNKUZXVqbFj_-etNVdjWXJA-_N4EHgEuM7jhDZEoQJtOYckzlCRgRJFHEhOCnxzOPz8HE-x0KK0EYUzEC9eKrbczewNfKutbDKodtYeDG2RbOVFlC6w7BQ6dKuK6VNj1ZV2HizfRRt_V9epicKad0MbBDsLK114Vtf-Cyc7q1lfMX4CxXpTeTv30MNsvF-_wpWr08Ps_vV5HGUsqIUSSE5BInFDNFUYy1xFjkmcCEJxJrQrJwMyYhRJE449IosyUsEUrnueZ0DK6Hd-um-uiMb9Nd1TUufJlKQuI4YbEM6HZAuqm8b0ye1o3dq-Y7xSjtS037UtOh1KBvBl1Yl6lP-w--GrAJxOTqiJlkTBD6C_Q8fbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922778479</pqid></control><display><type>article</type><title>Extreme Points of the Unit Ball in the Dual Space of Some Real Subspaces of Banach Spaces of Lipschitz Functions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alimohammadi, Davood ; Pazandeh, Hadis</creator><contributor>Zhu, C.</contributor><creatorcontrib>Alimohammadi, Davood ; Pazandeh, Hadis ; Zhu, C.</creatorcontrib><description>Let X be a compact Hausdorff space, τ be a continuous involution on X and C(X,τ) denote the uniformly closed real subalgebra of C(X) consisting of all f∈C(X) for which f∘τ=f̅. Let (X,d) be a compact metric space and let Lip(X,dα) denote the complex Banach space of complex-valued Lipschitz functions of order α on (X,d) under the norm ∥f∥X,pα=max⁡{∥f∥X,pα(f)}, where α∈(0,1]. For α∈(0,1), the closed subalgebra of Lip(X,α) consisting of all f∈Lip(X,dα) for which |f(x)-f(y)|/dα(x,y)→0 as d(x,y)→0, denotes by lip(X,dα). Let τ be a Lipschitz involution on (X,d) and define Lip(X,τ,dα)=Lip(X,dα)∩C(X,τ) for α∈(0,1] and lip(X,τ,dα)=lip(X,dα)∩C(X,τ) for α∈(0,1). In this paper, we give a characterization of extreme points of BA*, where A is a real linear subspace of Lip(X,dα) or lip(X,dα) which contains 1, in particular, Lip(X,τ,dα) or lip(X,τ,dα).</description><identifier>ISSN: 2090-4657</identifier><identifier>ISSN: 2090-4665</identifier><identifier>EISSN: 2090-4665</identifier><identifier>DOI: 10.5402/2012/735139</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algebra ; Banach spaces</subject><ispartof>ISRN mathematical analysis, 2012-01, Vol.2012 (2012), p.1-13</ispartof><rights>Copyright © 2012 Davood Alimohammadi and Hadis Pazandeh.</rights><rights>Copyright © 2012 Davood Alimohammadi and Hadis Pazandeh. Davood Alimohammadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1999-4306695918314a3071c9116fd6125891c22d6fdee822a27d59eaeb2486acffc53</citedby><cites>FETCH-LOGICAL-c1999-4306695918314a3071c9116fd6125891c22d6fdee822a27d59eaeb2486acffc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Zhu, C.</contributor><creatorcontrib>Alimohammadi, Davood</creatorcontrib><creatorcontrib>Pazandeh, Hadis</creatorcontrib><title>Extreme Points of the Unit Ball in the Dual Space of Some Real Subspaces of Banach Spaces of Lipschitz Functions</title><title>ISRN mathematical analysis</title><description>Let X be a compact Hausdorff space, τ be a continuous involution on X and C(X,τ) denote the uniformly closed real subalgebra of C(X) consisting of all f∈C(X) for which f∘τ=f̅. Let (X,d) be a compact metric space and let Lip(X,dα) denote the complex Banach space of complex-valued Lipschitz functions of order α on (X,d) under the norm ∥f∥X,pα=max⁡{∥f∥X,pα(f)}, where α∈(0,1]. For α∈(0,1), the closed subalgebra of Lip(X,α) consisting of all f∈Lip(X,dα) for which |f(x)-f(y)|/dα(x,y)→0 as d(x,y)→0, denotes by lip(X,dα). Let τ be a Lipschitz involution on (X,d) and define Lip(X,τ,dα)=Lip(X,dα)∩C(X,τ) for α∈(0,1] and lip(X,τ,dα)=lip(X,dα)∩C(X,τ) for α∈(0,1). In this paper, we give a characterization of extreme points of BA*, where A is a real linear subspace of Lip(X,dα) or lip(X,dα) which contains 1, in particular, Lip(X,τ,dα) or lip(X,τ,dα).</description><subject>Algebra</subject><subject>Banach spaces</subject><issn>2090-4657</issn><issn>2090-4665</issn><issn>2090-4665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0M1LwzAYBvAgCo65k2cheFTq8t3m6OamwkBx7lyyNKUZXVqbFj_-etNVdjWXJA-_N4EHgEuM7jhDZEoQJtOYckzlCRgRJFHEhOCnxzOPz8HE-x0KK0EYUzEC9eKrbczewNfKutbDKodtYeDG2RbOVFlC6w7BQ6dKuK6VNj1ZV2HizfRRt_V9epicKad0MbBDsLK114Vtf-Cyc7q1lfMX4CxXpTeTv30MNsvF-_wpWr08Ps_vV5HGUsqIUSSE5BInFDNFUYy1xFjkmcCEJxJrQrJwMyYhRJE449IosyUsEUrnueZ0DK6Hd-um-uiMb9Nd1TUufJlKQuI4YbEM6HZAuqm8b0ye1o3dq-Y7xSjtS037UtOh1KBvBl1Yl6lP-w--GrAJxOTqiJlkTBD6C_Q8fbU</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Alimohammadi, Davood</creator><creator>Pazandeh, Hadis</creator><general>Hindawi Puplishing Corporation</general><general>International Scholarly Research Network</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120101</creationdate><title>Extreme Points of the Unit Ball in the Dual Space of Some Real Subspaces of Banach Spaces of Lipschitz Functions</title><author>Alimohammadi, Davood ; Pazandeh, Hadis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1999-4306695918314a3071c9116fd6125891c22d6fdee822a27d59eaeb2486acffc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Banach spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alimohammadi, Davood</creatorcontrib><creatorcontrib>Pazandeh, Hadis</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ISRN mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alimohammadi, Davood</au><au>Pazandeh, Hadis</au><au>Zhu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme Points of the Unit Ball in the Dual Space of Some Real Subspaces of Banach Spaces of Lipschitz Functions</atitle><jtitle>ISRN mathematical analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2090-4657</issn><issn>2090-4665</issn><eissn>2090-4665</eissn><abstract>Let X be a compact Hausdorff space, τ be a continuous involution on X and C(X,τ) denote the uniformly closed real subalgebra of C(X) consisting of all f∈C(X) for which f∘τ=f̅. Let (X,d) be a compact metric space and let Lip(X,dα) denote the complex Banach space of complex-valued Lipschitz functions of order α on (X,d) under the norm ∥f∥X,pα=max⁡{∥f∥X,pα(f)}, where α∈(0,1]. For α∈(0,1), the closed subalgebra of Lip(X,α) consisting of all f∈Lip(X,dα) for which |f(x)-f(y)|/dα(x,y)→0 as d(x,y)→0, denotes by lip(X,dα). Let τ be a Lipschitz involution on (X,d) and define Lip(X,τ,dα)=Lip(X,dα)∩C(X,τ) for α∈(0,1] and lip(X,τ,dα)=lip(X,dα)∩C(X,τ) for α∈(0,1). In this paper, we give a characterization of extreme points of BA*, where A is a real linear subspace of Lip(X,dα) or lip(X,dα) which contains 1, in particular, Lip(X,τ,dα) or lip(X,τ,dα).</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.5402/2012/735139</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-4657
ispartof ISRN mathematical analysis, 2012-01, Vol.2012 (2012), p.1-13
issn 2090-4657
2090-4665
2090-4665
language eng
recordid cdi_proquest_journals_922778479
source EZB-FREE-00999 freely available EZB journals
subjects Algebra
Banach spaces
title Extreme Points of the Unit Ball in the Dual Space of Some Real Subspaces of Banach Spaces of Lipschitz Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20Points%20of%20the%20Unit%20Ball%20in%20the%20Dual%20Space%20of%20Some%20Real%20Subspaces%20of%20Banach%20Spaces%20of%20Lipschitz%20Functions&rft.jtitle=ISRN%20mathematical%20analysis&rft.au=Alimohammadi,%20Davood&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2090-4657&rft.eissn=2090-4665&rft_id=info:doi/10.5402/2012/735139&rft_dat=%3Cproquest_cross%3E2592791921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922778479&rft_id=info:pmid/&rfr_iscdi=true